Differential evolution (DE) is a global optimizer for continuous design variables. To enhance DE, it is necessary to handle discrete design variables. In this paper, a discrete differential evolution (DDE) algorit...Differential evolution (DE) is a global optimizer for continuous design variables. To enhance DE, it is necessary to handle discrete design variables. In this paper, a discrete differential evolution (DDE) algorithm is proposed to handle discrete design variables The proposed DDE is based on the DE/l/rand/bin method. In the proposed DDE, the mutation ratio is regarded as the exchange probability, and thus, no modifications of DE/l/rand/bin are required. In addition, in order to maintain diversity through the search process, we initialize all search points. By introducing the initialization of all search points, global or quasi-optimum solution can be found. We validate the proposed DDE by applying it to several benchmark problems.展开更多
The parameters of principal and directional extrema in a marine environment are important in marine engineering design, especially for appropriate construction of oceanic platforms and other structures. When designing...The parameters of principal and directional extrema in a marine environment are important in marine engineering design, especially for appropriate construction of oceanic platforms and other structures. When designing wave walls and break water structures, the orientation of the breakwater or seawall depends mainly on the direction of the strongest waves. However, the strength of the breakwater and the elevation of the seawall depend on the magnitude of the biggest wave height of the strongest waves. Thus, identification of directional extrema plays an important role in the design of wave factors. When calculating the directional extremum, different materials may require different specific computational methods, yet few theoretical studies have been conducted in this field of research. Based on multivariate extremnm statistical theory, this paper utilizes a discrete random variable to build a joint probability model compounded by a discrete random variable and a multivariate continuous random variable. Furthermore, this paper provides the first investigation on the theories and methodologies to deduce wave directional extrema. The results provide tools for both creating the calculation method of the directional extremum value and providing the rational directional extremum parameters for marine engineering design.展开更多
文摘Differential evolution (DE) is a global optimizer for continuous design variables. To enhance DE, it is necessary to handle discrete design variables. In this paper, a discrete differential evolution (DDE) algorithm is proposed to handle discrete design variables The proposed DDE is based on the DE/l/rand/bin method. In the proposed DDE, the mutation ratio is regarded as the exchange probability, and thus, no modifications of DE/l/rand/bin are required. In addition, in order to maintain diversity through the search process, we initialize all search points. By introducing the initialization of all search points, global or quasi-optimum solution can be found. We validate the proposed DDE by applying it to several benchmark problems.
基金Supported by the National Natural Science Foundation of China (No. 40776006)Shanghai Typhoon Research Fund (No.2009ST05)
文摘The parameters of principal and directional extrema in a marine environment are important in marine engineering design, especially for appropriate construction of oceanic platforms and other structures. When designing wave walls and break water structures, the orientation of the breakwater or seawall depends mainly on the direction of the strongest waves. However, the strength of the breakwater and the elevation of the seawall depend on the magnitude of the biggest wave height of the strongest waves. Thus, identification of directional extrema plays an important role in the design of wave factors. When calculating the directional extremum, different materials may require different specific computational methods, yet few theoretical studies have been conducted in this field of research. Based on multivariate extremnm statistical theory, this paper utilizes a discrete random variable to build a joint probability model compounded by a discrete random variable and a multivariate continuous random variable. Furthermore, this paper provides the first investigation on the theories and methodologies to deduce wave directional extrema. The results provide tools for both creating the calculation method of the directional extremum value and providing the rational directional extremum parameters for marine engineering design.