Two silkworm strains viz, B20 A (high cocoon shell ratio) and C.Nichi (low cocoon shell ratio) were sib mated for 10 generations to determine the homozygosis. Both bulked segregant analysis(BSA) and near isogenic line...Two silkworm strains viz, B20 A (high cocoon shell ratio) and C.Nichi (low cocoon shell ratio) were sib mated for 10 generations to determine the homozygosis. Both bulked segregant analysis(BSA) and near isogenic lines (NIL) studies were done to identify the RFLP markers closely linked to cocoon shell parameters. Three hundred and fifty two random clones were identified as the low copy number sequence and used for identification of Restriction Fragment Length Polymorphic (RFLP) marker linked to cocoon weight and cocoon shell character. In the bulk segregant analysis, DNA from the parents (B20 A, C.Nichi), F 1 and F 2 progeny of high shell ratio (HSR) and low shell ratio (LSR) were screened for hybridization with the random clones. Polymorphic banding pattern achieved through southern hybridization with different probes indicated the probable correlation of polymorphism with high and low cocoon shell character which are possible landmarks in identifying the putative marker(s) for the cocoon shell character. Out of the 100 probes tried with parents, F 1, F 2 and their bulks, 10 probes were found to be closely linked to cocoon shell characters.展开更多
A chlorothalonil(CTN)-degrading bacterial strain H4 was isolated in this study from a contaminated soil by continuous enrichment culture to identify its characteristics and to investigate its potential for remediation...A chlorothalonil(CTN)-degrading bacterial strain H4 was isolated in this study from a contaminated soil by continuous enrichment culture to identify its characteristics and to investigate its potential for remediation of CTN in contaminated soil. Based on the morphological, physiological and biochemical tests and 16 S r DNA sequence analysis, the strain was identified as Stenotrophomonas sp. After liquid culture for 7 d, 82.2% of CTN was removed by strain H4. The isolate could degrade CTN over a broad range of temperatures and p H values, and the optimum conditions for H4 degradation were p H 7.0 and 30℃. Reintroduction of the bacteria into artificially contaminated soil resulted in substantial removal of CTN(> 50%) after incubation for 14 d. Soil samples treated by H4 showed significant increases(P < 0.05) in soil dehydrogenase activity, soil polyphenol oxidase activity, average well-color development obtained by the Biolog Eco plate TM assay and Shannon-Weaver index, compared with the control. Strain H4 might be a promising candidate for application in the bioremediation of CTN-contaminated soils.展开更多
文摘Two silkworm strains viz, B20 A (high cocoon shell ratio) and C.Nichi (low cocoon shell ratio) were sib mated for 10 generations to determine the homozygosis. Both bulked segregant analysis(BSA) and near isogenic lines (NIL) studies were done to identify the RFLP markers closely linked to cocoon shell parameters. Three hundred and fifty two random clones were identified as the low copy number sequence and used for identification of Restriction Fragment Length Polymorphic (RFLP) marker linked to cocoon weight and cocoon shell character. In the bulk segregant analysis, DNA from the parents (B20 A, C.Nichi), F 1 and F 2 progeny of high shell ratio (HSR) and low shell ratio (LSR) were screened for hybridization with the random clones. Polymorphic banding pattern achieved through southern hybridization with different probes indicated the probable correlation of polymorphism with high and low cocoon shell character which are possible landmarks in identifying the putative marker(s) for the cocoon shell character. Out of the 100 probes tried with parents, F 1, F 2 and their bulks, 10 probes were found to be closely linked to cocoon shell characters.
基金Supported by the Public Service Special Project of the Environmental Protection Ministry of China(No.201109018)
文摘A chlorothalonil(CTN)-degrading bacterial strain H4 was isolated in this study from a contaminated soil by continuous enrichment culture to identify its characteristics and to investigate its potential for remediation of CTN in contaminated soil. Based on the morphological, physiological and biochemical tests and 16 S r DNA sequence analysis, the strain was identified as Stenotrophomonas sp. After liquid culture for 7 d, 82.2% of CTN was removed by strain H4. The isolate could degrade CTN over a broad range of temperatures and p H values, and the optimum conditions for H4 degradation were p H 7.0 and 30℃. Reintroduction of the bacteria into artificially contaminated soil resulted in substantial removal of CTN(> 50%) after incubation for 14 d. Soil samples treated by H4 showed significant increases(P < 0.05) in soil dehydrogenase activity, soil polyphenol oxidase activity, average well-color development obtained by the Biolog Eco plate TM assay and Shannon-Weaver index, compared with the control. Strain H4 might be a promising candidate for application in the bioremediation of CTN-contaminated soils.