针对NDOD(outlier detection algorithm based on neighborhood and density)算法在判断具有不同密度分布的聚类间过渡区域对象时存在的不足,以及为了降低算法时间复杂度,提出一种基于方形对称邻域的局部离群点检测方法。该算法改用方...针对NDOD(outlier detection algorithm based on neighborhood and density)算法在判断具有不同密度分布的聚类间过渡区域对象时存在的不足,以及为了降低算法时间复杂度,提出一种基于方形对称邻域的局部离群点检测方法。该算法改用方形邻域,吸收基于网格的思想,通过扩张方形邻域快速排除聚类点及避免"维灾";通过引入记忆思想,使得邻域查询次数及范围成倍地减小;同时新定义的离群度度量方法有利于提高检测精度。实验测试表明,该算法检测离群点的速度及精度均优于NDOD等算法。展开更多
针对Mohemmed等新近提出的基于粒子群优化(PSO)算法的离群点检测方法(MOHEMMED A,ZHANGM,BROWNE W.Particle swarm optimisation for outlier detection[C]//GECCO'10:Proceedings of the 12th AnnualConference on Genetic and Evo...针对Mohemmed等新近提出的基于粒子群优化(PSO)算法的离群点检测方法(MOHEMMED A,ZHANGM,BROWNE W.Particle swarm optimisation for outlier detection[C]//GECCO'10:Proceedings of the 12th AnnualConference on Genetic and Evolutionary Computation.Oregon,Portland:ACM,2010:83-84)可能出现适应值和相应数据对象的离群度不匹配的不合理现象,分析了存在这种现象的原因,并提出一种改进的适应值函数。新的适应值调整了对不合理邻域半径估值的惩罚力度,从而弱化粒子适应值和对象离群度之间的偏差;算法在解空间范围内搜索近似最优粒子,以确定合适的邻域半径估值;最终基于该半径估值衡量各数据对象的离群度。通过对若干UCI数据集的实验表明,采用新的适应值函数的离群检测算法优于原有方法和LOF方法。所提算法不仅解决了上述存在的问题,离群点检测效果也更突出,这表明合理定义适应值函数有助于提高算法的检测质量。展开更多
文摘针对NDOD(outlier detection algorithm based on neighborhood and density)算法在判断具有不同密度分布的聚类间过渡区域对象时存在的不足,以及为了降低算法时间复杂度,提出一种基于方形对称邻域的局部离群点检测方法。该算法改用方形邻域,吸收基于网格的思想,通过扩张方形邻域快速排除聚类点及避免"维灾";通过引入记忆思想,使得邻域查询次数及范围成倍地减小;同时新定义的离群度度量方法有利于提高检测精度。实验测试表明,该算法检测离群点的速度及精度均优于NDOD等算法。
文摘针对Mohemmed等新近提出的基于粒子群优化(PSO)算法的离群点检测方法(MOHEMMED A,ZHANGM,BROWNE W.Particle swarm optimisation for outlier detection[C]//GECCO'10:Proceedings of the 12th AnnualConference on Genetic and Evolutionary Computation.Oregon,Portland:ACM,2010:83-84)可能出现适应值和相应数据对象的离群度不匹配的不合理现象,分析了存在这种现象的原因,并提出一种改进的适应值函数。新的适应值调整了对不合理邻域半径估值的惩罚力度,从而弱化粒子适应值和对象离群度之间的偏差;算法在解空间范围内搜索近似最优粒子,以确定合适的邻域半径估值;最终基于该半径估值衡量各数据对象的离群度。通过对若干UCI数据集的实验表明,采用新的适应值函数的离群检测算法优于原有方法和LOF方法。所提算法不仅解决了上述存在的问题,离群点检测效果也更突出,这表明合理定义适应值函数有助于提高算法的检测质量。