期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于梯度提升回归树的大数据集离群点挖掘模型构建
1
作者 胡小琴 《佳木斯大学学报(自然科学版)》 CAS 2019年第5期743-747,共5页
为了提高大数据集离群点挖掘能力,提出基于梯度提升回归树的大数据集离群点挖掘模型,构建大数据集离群点的回归树分布模型,采用多维特征融合方法进行大数据集离群点的特征检测,提取大数据集离群点的空间区域分布特征量,采用梯度提升回... 为了提高大数据集离群点挖掘能力,提出基于梯度提升回归树的大数据集离群点挖掘模型,构建大数据集离群点的回归树分布模型,采用多维特征融合方法进行大数据集离群点的特征检测,提取大数据集离群点的空间区域分布特征量,采用梯度提升回归分析方法对提取的大数据集离群点特征进行模糊聚类处理,在聚类中心中实现对大数据集离群点数据的自适应融合和分布式检测,通过梯度提升回归树分析方法实现大数据集离群点挖掘。仿真结果表明,采用该方法进行大数据集离群点挖掘的准确性较高,抗干扰性较好,提高了大数据集离群点挖掘过程的收敛和控制能力。 展开更多
关键词 梯度提升回归树 大数据 离群 挖掘
下载PDF
一种基于关键域子空间的离群数据聚类算法 被引量:8
2
作者 金义富 朱庆生 邢永康 《计算机研究与发展》 EI CSCD 北大核心 2007年第4期651-659,共9页
离群数据发现与分析是数据挖掘的重要组成部分,现有离群数据挖掘算法主要针对如何检测离群对象,缺乏对挖掘出的离群数据集进行解释与分析的有效方法.通过对离群数据来源及特性进行分析并结合粗糙集理论,定义了离群划分相似度的概念,提... 离群数据发现与分析是数据挖掘的重要组成部分,现有离群数据挖掘算法主要针对如何检测离群对象,缺乏对挖掘出的离群数据集进行解释与分析的有效方法.通过对离群数据来源及特性进行分析并结合粗糙集理论,定义了离群划分相似度的概念,提出了一种基于关键属性域子空间的离群数据聚类算法COKAS,该算法不仅揭示了离群数据子空间特性,进一步获取了扩展知识,而且有助于对整体数据集的理解.对两个多维数据集的实验结果表明,该算法具有良好的适应性及有效性. 展开更多
关键词 离群集 离群划分相似度 关键域子空间 聚类
下载PDF
The Rigidity of the Kernels of the Natural Morphisms between Toeplitz Algebras
3
作者 许庆祥 王勤 《Journal of Donghua University(English Edition)》 EI CAS 2005年第1期41-44,共4页
Let (G, E) be a quasi-ordered group such that E∩E -1 is infinite, (G, G +) an ordered group with G +EG, and (G, G 1) the partially ordered group induced by (G, E).Let γ E, G + ∶T G + →T E and γ E, G 1 ∶T G 1 →T... Let (G, E) be a quasi-ordered group such that E∩E -1 is infinite, (G, G +) an ordered group with G +EG, and (G, G 1) the partially ordered group induced by (G, E).Let γ E, G + ∶T G + →T E and γ E, G 1 ∶T G 1 →T E be the corresponding natural morphisms between Toeplitz algebras. We prove that the kernel Ker γ E, G + is rigid,while Ker γ E, G 1 is equal to the compact-operator ideal on 2(G 1), and all Fredholm operators in the Toeplitz algebra T G 1 are of index zero. 展开更多
关键词 Discrete group Toeplitz algebra rigid ideal Fredholm operator.
下载PDF
Generation of a Four-Particle Cluster State and Perfect Teleportation of an Arbitrary Two-Particle State in an Ion-Trap System 被引量:1
4
作者 WANG Xin-Wen YANG Guo-Jian 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第10期588-592,共5页
We propose a scheme for generating a four-particle cluster state in an ion-trap system.The scheme isinsensitive to the thermal motion of the ions,and needs less operations than previous ones.With such a setup,we alsod... We propose a scheme for generating a four-particle cluster state in an ion-trap system.The scheme isinsensitive to the thermal motion of the ions,and needs less operations than previous ones.With such a setup,we alsodemonstrate a procedure for perfectly teleporting an arbitrary two-particle state via a single multipartite entanglementchannel,a four-particle cluster state. 展开更多
关键词 cluster state TELEPORTATION ION-TRAP
下载PDF
Self-organizing dual clustering considering spatial analysis and hybrid distance measures 被引量:10
5
作者 JIAO LiMin LIU YaoLin ZOU Bin 《Science China Earth Sciences》 SCIE EI CAS 2011年第8期1268-1278,共11页
Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial out... Dual clustering performs object clustering in both spatial and non-spatial domains that cannot be dealt with well by traditional clustering methods.However,recent dual clustering research has often omitted spatial outliers,subjectively determined the weights of hybrid distance measures,and produced diverse clustering results.In this study,we first redefined the dual clustering problem and related concepts to highlight the clustering criteria.We then presented a self-organizing dual clustering algorithm (SDC) based on the self-organizing feature map and certain spatial analysis operations,including the Voronoi diagram and polygon aggregation and amalgamation.The algorithm employs a hybrid distance measure that combines geometric distance and non-spatial similarity,while the clustering spectrum analysis helps to determine the weight of non-spatial similarity in the measure.A case study was conducted on a spatial database of urban land price samples in Wuhan,China.SDC detected spatial outliers and clustered the points into spatially connective and attributively homogenous sub-groups.In particular,SDC revealed zonal areas that describe the actual distribution of land prices but were not demonstrated by other methods.SDC reduced the subjectivity in dual clustering. 展开更多
关键词 dual clustering DATAMINING self-organizing feature map Voronoi diagram
原文传递
SELF-CANCELLATION OF MODULES HAVING THE FINITE EXCHANGE PROPERTY 被引量:2
6
作者 CHENHUANYIN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2005年第1期111-118,共8页
Self-cancellation of modules having the finite exchange property is introduced. If a right R-module M has the finite exchange property, it is shown that M has selfcancellation if and only if EndR(M) is a strongly sepa... Self-cancellation of modules having the finite exchange property is introduced. If a right R-module M has the finite exchange property, it is shown that M has selfcancellation if and only if EndR(M) is a strongly separative ring. Using this result,some new characterizations of strong separativity are obtained. 展开更多
关键词 Self-cancellation Strong separativity
原文传递
A TRANSFER FORECASTING MODEL FOR CONTAINER THROUGHPUT GUIDED BY DISCRETE PSO 被引量:4
7
作者 XIAO Jin XIAO Yi +1 位作者 FU Julei LAI Kin Keung 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第1期181-192,共12页
Abstract Accurate forecast of future container throughput of a port is very important for its con struction, upgrading, and operation management. This study proposes a transfer forecasting model guided by discrete par... Abstract Accurate forecast of future container throughput of a port is very important for its con struction, upgrading, and operation management. This study proposes a transfer forecasting model guided by discrete particle swarm optimization algorithm (TF-DPSO). It firstly transfers some related time series in source domain to assist in modeling the target time series by transfer learning technique, and then constructs the forecasting model by a pattern matching method called analog complexing. Finally, the discrete particle swarm optimization algorithm is introduced to find the optimal match between the two important parameters in TF-DPSO. The container throughput time series of two im portant ports in China, Shanghai Port and Ningbo Port are used for empirical analysis, and the results show the effectiveness of the proposed model. 展开更多
关键词 Analog complexing container throughput forecasting discrete particle swarm optimiza-tion transfer forecasting model.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部