期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于VMD-ORELM-EC的超短期风速组合预测模型
1
作者 谢东良 郅伦海 +1 位作者 周康 胡峰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第5期703-711,共9页
为提高超短期风速预测的精度,文章提出一种基于变分模态分解(variational mode decomposition,VMD)、离群鲁棒极限学习机(outlier-robust extreme learning machine,ORELM)和误差修正(error correction,EC)的超短期风速组合预测模型VMD-... 为提高超短期风速预测的精度,文章提出一种基于变分模态分解(variational mode decomposition,VMD)、离群鲁棒极限学习机(outlier-robust extreme learning machine,ORELM)和误差修正(error correction,EC)的超短期风速组合预测模型VMD-ORELM-EC。首先利用VMD将原始风速序列分解,并对每个分解子序列分别建立ORELM模型,将各子模型预测结果相加得到模型初步预测序列;然后将原始风速序列与初步预测序列相减得到模型的误差序列,并对误差序列进行VMD分解,对分解得到的误差子序列建立ORELM模型,从而得到误差预测序列;最后将模型的初步预测序列与误差预测序列组合得到最终的风速预测序列。利用该文提出的预测模型对北京测风塔实测的风速数据进行分析,结果表明模型可以有效挖掘风速序列特性,在超短期风速预测上具有较高的预测性能。 展开更多
关键词 超短期风速预测 变分模态分解(VMD) 离群鲁棒极限学习机(ORELM) 误差修正(EC)
下载PDF
基于离群点检测和误差修正的空气质量指数预测
2
作者 甘露情 刘媛华 《计算机系统应用》 2021年第3期250-255,共6页
空气质量指数(Air Quality Index, AQI)预测可以为人们日常生产活动以及空气污染治理工作提供指导.针对空气质量指数预测模型受离群点影响较大的问题,利用孤立森林算法对空气质量数据集进行离群点分析,采用离群鲁棒极限学习机模型(ORELM... 空气质量指数(Air Quality Index, AQI)预测可以为人们日常生产活动以及空气污染治理工作提供指导.针对空气质量指数预测模型受离群点影响较大的问题,利用孤立森林算法对空气质量数据集进行离群点分析,采用离群鲁棒极限学习机模型(ORELM)对空气质量指数进行预测,并构建误差修正模块对模型预测误差进行修正.最后,以北京市空气质量数据作为研究对象,分别利用ORELM模型以及极限学习机(ELM)模型进行预测,并对ORELM模型预测结果进行误差修正.实验结果表明:离群鲁棒极限学习机对离群点数据集泛化性能更强,误差修正模块能有效提高模型的预测精度. 展开更多
关键词 空气质量指数预测 孤立森林算法 离群鲁棒极限学习机 误差修正模块
下载PDF
基于EWT-FIG和ORELM模型的风速多步区间预测 被引量:1
3
作者 曾云 殷豪 刘哲 《宁夏电力》 2018年第4期6-13,共8页
针对风速预测具有较强的不确定性,提出了一种经验小波变换—模糊信息粒化和变异鲁棒极限学习机组成的短期风速区间预测模型。该模型采用经验小波变换将原始风速分解为若干个模态分量和一个剩余量,并对所有分量进行重构,为了缩小预测区... 针对风速预测具有较强的不确定性,提出了一种经验小波变换—模糊信息粒化和变异鲁棒极限学习机组成的短期风速区间预测模型。该模型采用经验小波变换将原始风速分解为若干个模态分量和一个剩余量,并对所有分量进行重构,为了缩小预测区间范围,仅对重构后的剩余量进行模糊粒化,根据需求提取每个窗口的最大值、平均值和最小值,然后对极限学习机进行优化,最后对所有分量建立离群鲁棒极限学习机预测模型,叠加预测值实现风速多步区间预测。实际算例表明:所提多步区间预测方法能有效跟踪风速变化,具有较高的预测精度和可靠的区间预测效果。 展开更多
关键词 经验小波变换-模糊信息粒化 极限学习 离群鲁棒极限学习机 风速预测 多步区间预坝4
下载PDF
基于非线性修正策略的空气质量预警系统研究 被引量:10
4
作者 王建州 杨文栋 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2019年第8期2138-2151,共14页
建立科学、有效的空气质量预警系统,对于保护人们的身体健康和促进社会和谐稳定具有重要的科学价值和实际意义.为此,本文首先利用孤立森林(isolationforest,iForest)算法进行空气质量指数(air quality index,AQI)离群点分析,然后建立了... 建立科学、有效的空气质量预警系统,对于保护人们的身体健康和促进社会和谐稳定具有重要的科学价值和实际意义.为此,本文首先利用孤立森林(isolationforest,iForest)算法进行空气质量指数(air quality index,AQI)离群点分析,然后建立了一种空气质量预警系统,该系统由数据预处理模块、优化模块、预测模块和修正模块构成,融合了时变滤波经验模态分解(time varying filtering based empirical mode decomposition,TVF-EMD)、改进的蝴蝶优化算法(modified butterfly optimization algorithm,MBOA)、离群鲁棒极限学习机(outlier robust extreme learning machine,ORELM)和非线性修正策略,该预警系统成功地实现了空气质量的有效预警.同时,以污染程度不同的5个城市作为实验地点对预警效果进行检验,结果表明:1)与经验模态分解(empirical mode decomposition,EMD)相比,TVF-EMD可以更为有效地降低原始数据的非线性和非平稳性特征;2)基于MBOA的误差非线性修正策略比其他误差修正策略更胜一筹,可以显著提高预警系统的性能;3)建立的预警系统的性能要优于其他对比模型,可以对污染程度不同的城市进行有效预警. 展开更多
关键词 空气质量预警 时变滤波经验模态分解 改进的蝴蝶优化算法 离群鲁棒极限学习机 非线性修正策略
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部