The photoionization and photodissociation of 1,4-dioxane have been investigated with a reflectron time-of-flight photoionization mass spectrometry and a tunable vacuum ultraviolet synchrotron radiation in the energy r...The photoionization and photodissociation of 1,4-dioxane have been investigated with a reflectron time-of-flight photoionization mass spectrometry and a tunable vacuum ultraviolet synchrotron radiation in the energy region of 8.0-15.5 eV. Parent ion and fragment ions at m/z 88, 87, 58, 57, 45, 44, 43, 41, 31, 30, 29, 28 and 15 are detected under supersonic conditions. The ionization energy of DX as well as the appearance energies of its fragment ions C4H7O2^+, C3H6O^+, C3H5O^+, C2H5O^+, C2H4O^+, C2H3O^+, C3H5^+, CH3O^+, C2H6^+, C2H5^+/CHO^+, C2H4^+ and CH3^+ was determined from their photoionization efficiency curves. The optimized structures for the neutrals, cations, transition states and intermediates related to photodissociation of DX are characterized at the B3LYP/6-31+G(d,p) level and their energies are obtained by G3B3 method. Possible dissociative channels of the DX are proposed based on comparison of experimental AE values and theoretical predicted ones. Intramolecular hydrogen migrations are found to be the dominant processes in most of the fragmentation pathways of 1,4-dioxane.展开更多
Dissociative photoionization of 1,2-epoxyoctane was investigated by synchrotron radiation vacuum ultraviolet photons in the energy region of 9.8-16.6 eV under ultrasonic molec-ular beam. Dissociative fragment ions wer...Dissociative photoionization of 1,2-epoxyoctane was investigated by synchrotron radiation vacuum ultraviolet photons in the energy region of 9.8-16.6 eV under ultrasonic molec-ular beam. Dissociative fragment ions were measured with reffection time-of-ight mass spectrometer at di erent photon energies. Appearance potentials of the dominative ion fragments were determined through photoionization efficiency curves. The structures and energies of the parent, ionized and neutral radicals were obtained with G3 calculations. Through comparing the experimental results with the theoretical calculations, we proposed the dissociative channels for the photoionization of 1,2-epoxyoctane.展开更多
Vacuum ultraviolet photon-induced ionization and dissociation of isoleucine are investi- gated with synchrotron radiation photoionization mass spectroscopy and theoretical cal- culations. The main fragment ions at m/z...Vacuum ultraviolet photon-induced ionization and dissociation of isoleucine are investi- gated with synchrotron radiation photoionization mass spectroscopy and theoretical cal- culations. The main fragment ions at m/z=86, 75, 74, 69, 57, 46, 45, 44, 41, 30, 28, and 18 from isoleucine are observed in the mass spectrum at the photon energy of 13 eV. From the photoionization efficiency curves, appearance energies for the principal fragment ions CsH12N+ (rn/z=86), C2H5NO2+ (m/z=75), C5H9+ (rn/z=-69), C4H9+ (m/z=57), and CH4N+ (m/z=30) are determined to be 8.844-0.07, 9.254-0.06, 10.20-4-0.12, 9.254-0.10, and 11.05+0.07 eV, respectively, and possible formation pathways are established in detail by the calculations at the B3LYP/6-31++G(d, p) levels. These proposed channels include simple bond cleavage reactions as well as reactions involving intermediates and transition structures. The experimental and computational appearance energies or barriers are in good agreement.展开更多
When the molecular ions XYZ+ (XY2+) are excited simultaneously from an electronic state E0 into two higher electronic states Ea and EZ with supervened dissociation or predisso- ciation, competition between the α ...When the molecular ions XYZ+ (XY2+) are excited simultaneously from an electronic state E0 into two higher electronic states Ea and EZ with supervened dissociation or predisso- ciation, competition between the α and β excitation-dissociation channels occurs. A the- oretical model is provided to deal with the competition of the two excitation-dissociation channels with more than two kinds of ionic products for XYZ+ (XY2+). Supposing that the photo-excitation rates of two states Eα and Eβ are much less than their dissociation or pre-dissociation rates, a theoretical equation can be deduced to fit the measured data, which reflects the dependence of the product branching ratios on the intensity ratios of two excitation lasers. From the fitted parameters the excitation cross section ratios are obtained. In experiment, we studied the competition between two excitation-dissociation channels of CO^2+. By measuring the dependence of the product branching ratio on the intensity ratio of two dissociation lasers and fitting the experiment data with the theoretical equation, excitation cross section ratios were deduced.展开更多
Theoretical calculations have been carried out to investigate the possible dissociation channels of isoprene. We focus on the major fragment ions of C5H7+, C5H5+, C4H5+, C3H6+, C3H5+, C3H4+, C3H3+ and C2H3+, w...Theoretical calculations have been carried out to investigate the possible dissociation channels of isoprene. We focus on the major fragment ions of C5H7+, C5H5+, C4H5+, C3H6+, C3H5+, C3H4+, C3H3+ and C2H3+, which were observed experimentally from the isoprene dissociative photoionization. The energy calculations were performed with the CBS-QB3 model. All the geometries and energies of the fragments, intermediates and transition states involved in the dissociations channels were determined. Finally, the mechanisms of the dissociation pathways were discussed on the comparison of theoretical and experimental results.展开更多
The 193 nm photodissociation dynamics of CH2CHCOC1 in the gas phase has been examined with the technique of time-resolved Fourier transform infrared emission (TR-FTIR) spectroscopy. Vibrationally excited photofragme...The 193 nm photodissociation dynamics of CH2CHCOC1 in the gas phase has been examined with the technique of time-resolved Fourier transform infrared emission (TR-FTIR) spectroscopy. Vibrationally excited photofragments of CO (v ≤ 5), HC1 (v ≤ 6), and C2H2 were observed and two photodissociation channels, the C-C1 fission channel and the HC1 elimina- tion channel have been identified. The vibrational and rotational state distributions of the photofragments CO and HC1 have been acquired by analyzing their fully rotationally resolved v→ v- 1 rovibrational progressions in the emission spectra, from which it has been firmly established that the mechanism involves production of HC1 via the four-center molecular elimination of CH2CHCOC1 after its internal conversion from the S1 state to the So state. In addition to the dominant C--C1 bond fission along the excited S1 state, the S1→S0 internal conversion has also been found to play an important role in the gas phase photolysis of CH2CHCOC1 as manifested by the considerable yield of HC1.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.91544105, No.U1532137, No.11575178, and No.U1232209).
文摘The photoionization and photodissociation of 1,4-dioxane have been investigated with a reflectron time-of-flight photoionization mass spectrometry and a tunable vacuum ultraviolet synchrotron radiation in the energy region of 8.0-15.5 eV. Parent ion and fragment ions at m/z 88, 87, 58, 57, 45, 44, 43, 41, 31, 30, 29, 28 and 15 are detected under supersonic conditions. The ionization energy of DX as well as the appearance energies of its fragment ions C4H7O2^+, C3H6O^+, C3H5O^+, C2H5O^+, C2H4O^+, C2H3O^+, C3H5^+, CH3O^+, C2H6^+, C2H5^+/CHO^+, C2H4^+ and CH3^+ was determined from their photoionization efficiency curves. The optimized structures for the neutrals, cations, transition states and intermediates related to photodissociation of DX are characterized at the B3LYP/6-31+G(d,p) level and their energies are obtained by G3B3 method. Possible dissociative channels of the DX are proposed based on comparison of experimental AE values and theoretical predicted ones. Intramolecular hydrogen migrations are found to be the dominant processes in most of the fragmentation pathways of 1,4-dioxane.
文摘Dissociative photoionization of 1,2-epoxyoctane was investigated by synchrotron radiation vacuum ultraviolet photons in the energy region of 9.8-16.6 eV under ultrasonic molec-ular beam. Dissociative fragment ions were measured with reffection time-of-ight mass spectrometer at di erent photon energies. Appearance potentials of the dominative ion fragments were determined through photoionization efficiency curves. The structures and energies of the parent, ionized and neutral radicals were obtained with G3 calculations. Through comparing the experimental results with the theoretical calculations, we proposed the dissociative channels for the photoionization of 1,2-epoxyoctane.
基金V. ACKNOWLEDGMENTS This work is supported by the National Natural Science Foundation of China (No.10875126 and No.10979048) and the Specialized Research Fund for the Doctoral Program of Higher Education, SRF for ROCS, SEM.
文摘Vacuum ultraviolet photon-induced ionization and dissociation of isoleucine are investi- gated with synchrotron radiation photoionization mass spectroscopy and theoretical cal- culations. The main fragment ions at m/z=86, 75, 74, 69, 57, 46, 45, 44, 41, 30, 28, and 18 from isoleucine are observed in the mass spectrum at the photon energy of 13 eV. From the photoionization efficiency curves, appearance energies for the principal fragment ions CsH12N+ (rn/z=86), C2H5NO2+ (m/z=75), C5H9+ (rn/z=-69), C4H9+ (m/z=57), and CH4N+ (m/z=30) are determined to be 8.844-0.07, 9.254-0.06, 10.20-4-0.12, 9.254-0.10, and 11.05+0.07 eV, respectively, and possible formation pathways are established in detail by the calculations at the B3LYP/6-31++G(d, p) levels. These proposed channels include simple bond cleavage reactions as well as reactions involving intermediates and transition structures. The experimental and computational appearance energies or barriers are in good agreement.
基金This work was supported by the National Natural Science Foundation of China (No.20673108).
文摘When the molecular ions XYZ+ (XY2+) are excited simultaneously from an electronic state E0 into two higher electronic states Ea and EZ with supervened dissociation or predisso- ciation, competition between the α and β excitation-dissociation channels occurs. A the- oretical model is provided to deal with the competition of the two excitation-dissociation channels with more than two kinds of ionic products for XYZ+ (XY2+). Supposing that the photo-excitation rates of two states Eα and Eβ are much less than their dissociation or pre-dissociation rates, a theoretical equation can be deduced to fit the measured data, which reflects the dependence of the product branching ratios on the intensity ratios of two excitation lasers. From the fitted parameters the excitation cross section ratios are obtained. In experiment, we studied the competition between two excitation-dissociation channels of CO^2+. By measuring the dependence of the product branching ratio on the intensity ratio of two dissociation lasers and fitting the experiment data with the theoretical equation, excitation cross section ratios were deduced.
基金This work was supported by the National Natural Science Foundation of China (No.91544228, No.21307137, No.41575125, No.41375127, No.U1232209) and the Outstanding Youth Science Foundation of Fujian Province of China (No.2015J06009).
文摘Theoretical calculations have been carried out to investigate the possible dissociation channels of isoprene. We focus on the major fragment ions of C5H7+, C5H5+, C4H5+, C3H6+, C3H5+, C3H4+, C3H3+ and C2H3+, which were observed experimentally from the isoprene dissociative photoionization. The energy calculations were performed with the CBS-QB3 model. All the geometries and energies of the fragments, intermediates and transition states involved in the dissociations channels were determined. Finally, the mechanisms of the dissociation pathways were discussed on the comparison of theoretical and experimental results.
基金supported by the National Natural Science Foundation of China (20733005 &20973179)
文摘The 193 nm photodissociation dynamics of CH2CHCOC1 in the gas phase has been examined with the technique of time-resolved Fourier transform infrared emission (TR-FTIR) spectroscopy. Vibrationally excited photofragments of CO (v ≤ 5), HC1 (v ≤ 6), and C2H2 were observed and two photodissociation channels, the C-C1 fission channel and the HC1 elimina- tion channel have been identified. The vibrational and rotational state distributions of the photofragments CO and HC1 have been acquired by analyzing their fully rotationally resolved v→ v- 1 rovibrational progressions in the emission spectra, from which it has been firmly established that the mechanism involves production of HC1 via the four-center molecular elimination of CH2CHCOC1 after its internal conversion from the S1 state to the So state. In addition to the dominant C--C1 bond fission along the excited S1 state, the S1→S0 internal conversion has also been found to play an important role in the gas phase photolysis of CH2CHCOC1 as manifested by the considerable yield of HC1.