期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
安徽査湾自然保护区群落的种—面积关系研究
1
作者 李瑞芬 杨悦 《绿色科技》 2012年第8期242-244,共3页
指出了生物多样性尺度转换的重要依据之一是种—面积关系。它将不同尺度的生物多样性有机地结合起来,主要研究物种的数量随面积的变化而发生变化的规律。应用三种模型研究了査湾自然保护区的12块样方的种—面积关系。结果表明:三种模型... 指出了生物多样性尺度转换的重要依据之一是种—面积关系。它将不同尺度的生物多样性有机地结合起来,主要研究物种的数量随面积的变化而发生变化的规律。应用三种模型研究了査湾自然保护区的12块样方的种—面积关系。结果表明:三种模型的R2值都较大,均能较好地拟合群落的种—面积关系,而拟合效果检验评价指标RSE、AAD、AARD显示:一次函数模型最优,幂函数次之,对数函数最末。 展开更多
关键词 査湾保护区 种—面积关系 研究
下载PDF
江苏沿江湖泊湿地越冬水鸟多样性及其影响因素 被引量:11
2
作者 张永 施慧 +2 位作者 刘璐婷 沈伟 赵梓羲 《湖泊科学》 EI CAS CSCD 北大核心 2022年第6期2005-2015,I0012-I0015,共15页
长江及其中下游湖泊湿地组成了独特的江—河复合型生态系统,孕育了极高的生物多样性,是全球生物多样性研究的热点区域之一.该区域是东亚—澳大利西亚迁徙通道上最重要的水鸟越冬地之一,每年冬季有超过百万只水鸟在此越冬,因此,分析相关... 长江及其中下游湖泊湿地组成了独特的江—河复合型生态系统,孕育了极高的生物多样性,是全球生物多样性研究的热点区域之一.该区域是东亚—澳大利西亚迁徙通道上最重要的水鸟越冬地之一,每年冬季有超过百万只水鸟在此越冬,因此,分析相关因素对越冬水鸟多样性的影响对维持其越冬安全具有重要意义.然而,目前相关研究多集中在如鄱阳湖、洞庭湖、升金湖等部分国家级保护区内,对经济较发达的江苏省沿江区域湖泊湿地水鸟多样性的研究仍不多见.本研究选择江苏长江沿江10处代表性湖泊湿地,于2018—2020年冬开展越冬水鸟调查,同时结合环境和人为因素,分析其对区域越冬水鸟多样性的影响.3次调查共记录到越冬水鸟42种109998只,隶属于6目9科.按地理区系划分,古北界16种,广布种15种,古北界—东洋界9种,东洋界2种;按生态类群划分,有游禽22种,涉禽20种.在10处湖泊湿地中,石臼湖水鸟物种数和数量均最多,金牛湖水鸟物种数和数量均为最低;Shannon-Wiener和Inverse-Simpson多样性指数最高的为石臼湖,最低分别为长荡湖和昆承湖.β多样性结果表明石臼湖水鸟群落与其它湿地相似性最低,长荡湖次之.β多样性分解分析结果显示,区域β多样性主要形成机制为物种替换.石臼湖对区域β多样性的相对贡献显著高于其它湖泊湿地,其次是长荡湖,相对贡献最低的是尚湖.线性模型结果表明:越冬水鸟丰富度与湿地总面积呈正相关,与缓冲区植被和水体面积呈负相关.人均GDP与越冬水鸟丰富度呈显著负相关.越冬水鸟物种数与湖泊湿地面积呈正相关,与人均GDP呈负相关.水鸟多样性指数受面积和人均GDP影响均不显著.江苏沿江地区是我国经济最发达的区域之一,对其越冬水鸟多样性及其影响因素开展研究进而提出相关保护建议,如持续开展越冬水鸟监测,及时发现保护空缺,提高对湿地周边区域土地利用状况的关注度等.本研究结果不仅为本地区越冬水鸟保护工作提供依据,同时也为上游经济相对薄弱但发展较快的地区开展相关保护工作提供参照. 展开更多
关键词 长江 迁徙候鸟 种—面积关系 栖息地利用 人为因素 保护投入
下载PDF
A Comparison of Tree Species Diversity in Two Subtropical Forests, Guangxi, Southwest China 被引量:2
3
作者 向悟生 丁涛 +1 位作者 吕仕洪 李先琨 《Journal of Resources and Ecology》 CSCD 2015年第4期208-216,共9页
Natural karst forests can support very high level of biodiversity, but difference of species diversity between the natural karst forests and non-karst forests is still less concerned. To analyze the difference of spec... Natural karst forests can support very high level of biodiversity, but difference of species diversity between the natural karst forests and non-karst forests is still less concerned. To analyze the difference of species diversity of the natural karst forests and non-karst forests in subtropics, we made a census of all woody species with diameter at breast height (dbh) 〉 1 cm in a 1-ha plot in Mulun subtropical karst forests and a 1-ha plot in Maoershan subtropical non-karst forests, Guangxi of south-western China. Species richness in Mulun plot (120 species) was higher than that in Maoershan plot (116 species). Mulun plot contained more families and genera, more stems and a larger proportion of rare species (species of individuals less than or equal to 1 ha^-1). At smaller scale (〈4000 m^2), species accumulation rate in Mulun plot was lower than that in Maoershan plot, and it was reversed at larger scale (〉5000 m^2). Total basal area in Mulun plot (18.47 m2) was smaller than that in Maoershan plot (30.74 m^2). Size structure distribution of all woody species in the two plots showed insignificant difference. The ten most dominant species, families and genera were quite different in the two plots. In Muiun plot, the most important species and family were Sinosideroxylon wightianum and Sapindaceae, while in Maoershan plot, Castanopsis carlesii and Fagaceae were the most important species and family. All these results suggest that middle subtropical natural karst forest in Mulun supports diverse species with high spatial variability, and their species composition are quite different with non-karst forests. This study implies that special attention is needed on selecting suitable species in karst forest restoration and vegetation management strategies. 展开更多
关键词 species richness species-area relationships species abundance species composition forest structure
原文传递
Two-step sampling can produce triphasic species-area relationship
4
作者 Xubin Pan 《Journal of Plant Ecology》 SCIE CSCD 2021年第4期673-678,共6页
Aims It is important to explore the underlying mechanisms that cause triphasic species–area relationship(triphasic SAR)across different scales in order to understand the spatial patterns of biodiversity.Methods Inste... Aims It is important to explore the underlying mechanisms that cause triphasic species–area relationship(triphasic SAR)across different scales in order to understand the spatial patterns of biodiversity.Methods Instead of theory establishment or field data derivation,I adopted a data simulation method that used the power function of SAR to fit log-normal distribution of species abundance.Important Findings The results showed that one-step sampling caused biphasic SAR and n-step sampling could cause 2n-phasic SAR.Practical two-step sampling produced triphasic SAR due to the Preston and Pan effects in large areas.Furthermore,before exploring biological or ecological mechanisms for the nature phenomenon,we should identify or exclude potential mathematical,statistical or sampling reasons. 展开更多
关键词 log-normal distribution power function of SAR species abundance distribution one-step sampling mathematical induction
原文传递
SPECIES-AREA RELATIONSHIP FOR POWER-LAW SPECIES ABUNDANCE DISTRIBUTION
5
作者 HARUYUKI IRIE KEI TOKITA 《International Journal of Biomathematics》 2012年第3期215-223,共9页
We studied the mathematical relations between species abundance distributions (SADs) and species-area relationships (SARs) and found that a power-law SAR can be generally derived from a power-law SAD without a spe... We studied the mathematical relations between species abundance distributions (SADs) and species-area relationships (SARs) and found that a power-law SAR can be generally derived from a power-law SAD without a special assumption such as the "canonical hypothesis". In the present analysis, an SAR-exponent is obtained as a function of an SAD-exponent for a finite number of species. We also studied the inverse problem, from SARs to SADs, and found that a power-SAD can be derived from a power-SAR under the condition that the functional form of the corresponding SAD is invariant for changes in the number of species. We also discuss general relationships among lognormal SADs, the broken-stick model (exponential SADs), linear SARs and logarithmic SARs. These results suggest the existence of a common mechanism for SADs and SARs, which could prove a useful tool for theoretical and experimental studies on biodiversity and species coexistence. 展开更多
关键词 Species-area relationship species abundance distribution power-law SAD.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部