We investigated whether species richness, diversity and density of understory herbaceous plants differed along logging(gap) and grazing(primarily by cattle) disturbance gradients, and sought to identify drivers of ric...We investigated whether species richness, diversity and density of understory herbaceous plants differed along logging(gap) and grazing(primarily by cattle) disturbance gradients, and sought to identify drivers of richness, diversity and density of understory vegetation of logged sites. A factorial experiment was conducted in the mixed conifer forest of Gidakom in Western Bhutan. Levels of the logging treatment included small(0.15 – 0.24 ha), medium(0.25 – 0.35 ha) and large(0.36 – 1.31 ha) gaps. The grazing treatment included grazed(primarily by cattle) and ungrazed(where herbivores were excluded by a fence) plots nested within each gap. Data were collected from 12 gaps(4 replicates at each level of logging) using the point intercept method. Shannon Weaver Diversity and Margalef's indices were used to estimate species diversity and describe species richness, respectively. Soil samples were analyzed for pH and nutrients. The interaction effect of logging and grazing was significant(p≤0.001) only on species diversity. Relative to ungrazed areas, species diversity was significantly higher(0.01≤p≤0.05) in medium grazed gaps. Under grazed conditions, soil P was negatively correlated with gap size and species diversity. While species diversity was positivelycorrelated(0.01≤p≤0.05) with soil N in grazed plots species richness was positively correlated(0.001≤p≤0.01) with soil N in ungrazed plots. Relative density of Yushania microphylla and Carex nubigena were higher under ungrazed conditions. Our study suggests that the combined effect of cattle grazing and logging results in higher species diversity of understory vegetation in medium and grazed gaps in mixed conifer forests of Bhutan,whereas increase or decrease in relative density of major species is determined primarily by the independent effects of grazing and logging. From management perspective, forest managers must refrain from creating large gaps to avoid loss of nutrients(mainly P and N), which may eventually affect tree regeneration. Managers intending to maintain understory vegetation diversity must consider the combined effects of grazing and logging, ensuring low to moderate grazing pressure.展开更多
Aims To explain how plant community copes with a recurring anthropogenic forest fire in Himalayan Chir pine forest,it is important to understand their postfire regeneration strategies.The primary aim of the study was ...Aims To explain how plant community copes with a recurring anthropogenic forest fire in Himalayan Chir pine forest,it is important to understand their postfire regeneration strategies.The primary aim of the study was to know:(i)how fire impact soil seed bank composition and(ii)how much soil seed bank composition differs with standing vegetation after the forest fire.Methods Soil samples were collected from burned and adjoining unburned sites in blocks using three layers down to 9 cm depth immediately after a forest fire and incubated in the net-house for seedling emergence.Same sites were revisited during late monsoon/early autumn season to know the species composition of standing vegetation recovered after a forest fire.Important Findings Soil contained viable seeds of>70 species.The average seed bank density was 8417 and 14217 seeds/m^(2) in the burned and unburned site,respectively.In both sites,it decreased with increasing soil depth.Overall fire had no significant impact on seed density;however,taking individual layers into consideration,fire had a significant impact on seed density only in the uppermost soil layer.The species richness of soil seed bank and standing vegetation was 73 and 100,respectively(with 35 shared species),resulting in a similarity of about 40%.In contrast,>80%species in soil seed bank was found similar between burned and unburned sites.Further,there were no significant differences in species richness of standing vegetation in burned(87 spp.)and unburned(78 spp.)sites.Our results showed that fire had an insignificant impact on soil seed bank composition and restoration potential of a plant species from seeds.The understory herb and shrub plant community’s ability to form a fire-resistant viable soil seed bank and capable to recover in the postfire rainy season,explains how they reduce the risk of recurring fire damage in maintaining their population.展开更多
基金support of the Government of Austria with funds routed through the sterreischer Austauschdienst(OeAD)
文摘We investigated whether species richness, diversity and density of understory herbaceous plants differed along logging(gap) and grazing(primarily by cattle) disturbance gradients, and sought to identify drivers of richness, diversity and density of understory vegetation of logged sites. A factorial experiment was conducted in the mixed conifer forest of Gidakom in Western Bhutan. Levels of the logging treatment included small(0.15 – 0.24 ha), medium(0.25 – 0.35 ha) and large(0.36 – 1.31 ha) gaps. The grazing treatment included grazed(primarily by cattle) and ungrazed(where herbivores were excluded by a fence) plots nested within each gap. Data were collected from 12 gaps(4 replicates at each level of logging) using the point intercept method. Shannon Weaver Diversity and Margalef's indices were used to estimate species diversity and describe species richness, respectively. Soil samples were analyzed for pH and nutrients. The interaction effect of logging and grazing was significant(p≤0.001) only on species diversity. Relative to ungrazed areas, species diversity was significantly higher(0.01≤p≤0.05) in medium grazed gaps. Under grazed conditions, soil P was negatively correlated with gap size and species diversity. While species diversity was positivelycorrelated(0.01≤p≤0.05) with soil N in grazed plots species richness was positively correlated(0.001≤p≤0.01) with soil N in ungrazed plots. Relative density of Yushania microphylla and Carex nubigena were higher under ungrazed conditions. Our study suggests that the combined effect of cattle grazing and logging results in higher species diversity of understory vegetation in medium and grazed gaps in mixed conifer forests of Bhutan,whereas increase or decrease in relative density of major species is determined primarily by the independent effects of grazing and logging. From management perspective, forest managers must refrain from creating large gaps to avoid loss of nutrients(mainly P and N), which may eventually affect tree regeneration. Managers intending to maintain understory vegetation diversity must consider the combined effects of grazing and logging, ensuring low to moderate grazing pressure.
基金supported by University Grants Commission(UGC)New Delhi under a Major Research Project[grant number:39-925/2010(SR)]to SSP.
文摘Aims To explain how plant community copes with a recurring anthropogenic forest fire in Himalayan Chir pine forest,it is important to understand their postfire regeneration strategies.The primary aim of the study was to know:(i)how fire impact soil seed bank composition and(ii)how much soil seed bank composition differs with standing vegetation after the forest fire.Methods Soil samples were collected from burned and adjoining unburned sites in blocks using three layers down to 9 cm depth immediately after a forest fire and incubated in the net-house for seedling emergence.Same sites were revisited during late monsoon/early autumn season to know the species composition of standing vegetation recovered after a forest fire.Important Findings Soil contained viable seeds of>70 species.The average seed bank density was 8417 and 14217 seeds/m^(2) in the burned and unburned site,respectively.In both sites,it decreased with increasing soil depth.Overall fire had no significant impact on seed density;however,taking individual layers into consideration,fire had a significant impact on seed density only in the uppermost soil layer.The species richness of soil seed bank and standing vegetation was 73 and 100,respectively(with 35 shared species),resulting in a similarity of about 40%.In contrast,>80%species in soil seed bank was found similar between burned and unburned sites.Further,there were no significant differences in species richness of standing vegetation in burned(87 spp.)and unburned(78 spp.)sites.Our results showed that fire had an insignificant impact on soil seed bank composition and restoration potential of a plant species from seeds.The understory herb and shrub plant community’s ability to form a fire-resistant viable soil seed bank and capable to recover in the postfire rainy season,explains how they reduce the risk of recurring fire damage in maintaining their population.