The microsatellite analysis of DNA plays an important role in studying the population genetics such as population structure, genetic variability and diversity, phylogenetic relationships of wild population of endanger...The microsatellite analysis of DNA plays an important role in studying the population genetics such as population structure, genetic variability and diversity, phylogenetic relationships of wild population of endangered species. The main aim of this study was the estimation of ten microsatellite markers variability in the F. cherrug and F. peregrinus populations. We investigated genetic diversity and structure of populations by using non-invasive genetic identification of individuals to characterize populations of raptors living in the captivity and wild in the Czech Republic during the breeding seasons 2009 and 2010. Within Falco cherrug, significant moderate genetic differentiation (FsT) was observed between Falco cherrug wild and captive. This means that there could be a little differentiation between the wild and the captive populations caused by Falco cherrug subspecies origin or hybridization in the captivity. The absence of significant genetic differentiation between Falco peregrinus wild and captive may be caused by the influence of reintroduction the captive populations in the past. Whereas one breeding population ofFalco peregrinus (Kokorinsko2 2010) was clustered by UPGMA dendrogram into the individual group, we assumed this population like independent, maybe not influenced by other groups. Moreover, a larger sample size would be necessary to confirm the hypothesis.展开更多
文摘The microsatellite analysis of DNA plays an important role in studying the population genetics such as population structure, genetic variability and diversity, phylogenetic relationships of wild population of endangered species. The main aim of this study was the estimation of ten microsatellite markers variability in the F. cherrug and F. peregrinus populations. We investigated genetic diversity and structure of populations by using non-invasive genetic identification of individuals to characterize populations of raptors living in the captivity and wild in the Czech Republic during the breeding seasons 2009 and 2010. Within Falco cherrug, significant moderate genetic differentiation (FsT) was observed between Falco cherrug wild and captive. This means that there could be a little differentiation between the wild and the captive populations caused by Falco cherrug subspecies origin or hybridization in the captivity. The absence of significant genetic differentiation between Falco peregrinus wild and captive may be caused by the influence of reintroduction the captive populations in the past. Whereas one breeding population ofFalco peregrinus (Kokorinsko2 2010) was clustered by UPGMA dendrogram into the individual group, we assumed this population like independent, maybe not influenced by other groups. Moreover, a larger sample size would be necessary to confirm the hypothesis.