KCl, CaCl2, NH4Cl, NaCl, K2SO4 and KF solutions were used for studying the effects of canons and anions on the dissolution of aluminum and the distribution of aluminum forms respectively. Power of exchanging and relea...KCl, CaCl2, NH4Cl, NaCl, K2SO4 and KF solutions were used for studying the effects of canons and anions on the dissolution of aluminum and the distribution of aluminum forms respectively. Power of exchanging and releasing aluminum of four kinds of canons was in the decreasing order Ca2+ >K+ >NH+4 >Na+.The dissolution of aluminum increased with the canon concentration. The adsorption affinity of various soils for aluminum was different. The aluminum in the soil with a stronger adsorption affinity was difficult to be exchanged and released by canons. The Al-F complexes were main species of inorganic aluminum at a low concentration of canons, while Al3+ became major species of inorganic aluminum at a high concentration of canons. The results on the effect of anions indicated that the concentrations of total aluminum, three kinds of inorganic aluminum (Al3+, Al-F and Al-OH complexes) and organic aluminum complexes (Al-OM)when SO2-4 was added into soil suspension were lower than those when Cl- was added. The dissolution of aluminum from soils and the distribution of aluminum forms in solution were edicted by the adsorption of Fon the soil. For soils with strong affinty for F- , the concentrations of the three inorganic aluminum species in soil solution after addition of F- were lower than those after addition of Cl-; but for soils with weak affinity for F- , the concentrations of Al3+ and Al-OM were lower and the concentrations of Al-F complexes and total inorganic aluminum after addition of F- were higher than those after addition of Cl-. The increase of F- concentration in soil solution accelerated the dissolution of aluminum from soils.展开更多
文摘KCl, CaCl2, NH4Cl, NaCl, K2SO4 and KF solutions were used for studying the effects of canons and anions on the dissolution of aluminum and the distribution of aluminum forms respectively. Power of exchanging and releasing aluminum of four kinds of canons was in the decreasing order Ca2+ >K+ >NH+4 >Na+.The dissolution of aluminum increased with the canon concentration. The adsorption affinity of various soils for aluminum was different. The aluminum in the soil with a stronger adsorption affinity was difficult to be exchanged and released by canons. The Al-F complexes were main species of inorganic aluminum at a low concentration of canons, while Al3+ became major species of inorganic aluminum at a high concentration of canons. The results on the effect of anions indicated that the concentrations of total aluminum, three kinds of inorganic aluminum (Al3+, Al-F and Al-OH complexes) and organic aluminum complexes (Al-OM)when SO2-4 was added into soil suspension were lower than those when Cl- was added. The dissolution of aluminum from soils and the distribution of aluminum forms in solution were edicted by the adsorption of Fon the soil. For soils with strong affinty for F- , the concentrations of the three inorganic aluminum species in soil solution after addition of F- were lower than those after addition of Cl-; but for soils with weak affinity for F- , the concentrations of Al3+ and Al-OM were lower and the concentrations of Al-F complexes and total inorganic aluminum after addition of F- were higher than those after addition of Cl-. The increase of F- concentration in soil solution accelerated the dissolution of aluminum from soils.