Elite maize hybrid Guidan0810 was selected as material, and the effects of fertilizing level and planting densities on yield and nitrogen utilization were dis- cussed in the study. In field experiments as per double-c...Elite maize hybrid Guidan0810 was selected as material, and the effects of fertilizing level and planting densities on yield and nitrogen utilization were dis- cussed in the study. In field experiments as per double-cropping system, 4 main plots (fertilization levels) and 6 subplots (planting densities) were set in a split plot design. The results suggested that yield had close relationship with fertilization levels and planting densities. Different fertilization levels and planting densities significantly affected yield. With the increase of nitrogen fertilization, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency declined. Under the same fertilization level, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency grew a little with the increase of planting density, so nitrogen efficiency could be improved by regulating planting density. The results also showed that A2 (including N 225.0 kg/hm2, P205 75.0 kg/hm^2, K20 187.5 kg/hm^2) matching to B3 (52 500 plants/hm^2) or B4(60 000 plants/hm^2) was a better design, which could obtain a higher yield in the range of 7 913.2-8 207.8 kg/hm2, respectively.展开更多
[Objective] This study aimed to explore the impact of climate change on wheat cropping by using province-specific historical data during 1996-2007. [Method] We established a panel data econometric model with lagged wh...[Objective] This study aimed to explore the impact of climate change on wheat cropping by using province-specific historical data during 1996-2007. [Method] We established a panel data econometric model with lagged wheat cropping area and province-specific fixed-effects model to control the unobserved factors. [Result] The results showed that the temperature positively affects wheat cropping area, while precipitation does not have such impact. [Conclusion] The study provided empirical evidence for analysis of the determinants of wheat cropping area in China.展开更多
The sugarcane is a main sugar crop in China. The seasonal drying is one of the problems that influence the improvement of output and quality of sugarcane in China. The experimental results for the water requirement an...The sugarcane is a main sugar crop in China. The seasonal drying is one of the problems that influence the improvement of output and quality of sugarcane in China. The experimental results for the water requirement and fertigation of the sugarcane showed, that the distribution of the rainfall in spring, autumn and winter, all could not suit the requirements for sugarcane growth. Detailedly, it can suit that sugarcane requirement of 74.4%, 68.6% and 35.7% respectively at seedling emerging stage, tillering stage and mature stage according to sugarcane growth. The drought has already limited the yield of sugarcane. Application of fertigation can enhance the fertilizer use efficiency, and it is also a water saving technique in sugarcane production.展开更多
文摘Elite maize hybrid Guidan0810 was selected as material, and the effects of fertilizing level and planting densities on yield and nitrogen utilization were dis- cussed in the study. In field experiments as per double-cropping system, 4 main plots (fertilization levels) and 6 subplots (planting densities) were set in a split plot design. The results suggested that yield had close relationship with fertilization levels and planting densities. Different fertilization levels and planting densities significantly affected yield. With the increase of nitrogen fertilization, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency declined. Under the same fertilization level, nitrogen use efficiency, nitrogen agronomic efficiency and nitrogen physiological efficiency grew a little with the increase of planting density, so nitrogen efficiency could be improved by regulating planting density. The results also showed that A2 (including N 225.0 kg/hm2, P205 75.0 kg/hm^2, K20 187.5 kg/hm^2) matching to B3 (52 500 plants/hm^2) or B4(60 000 plants/hm^2) was a better design, which could obtain a higher yield in the range of 7 913.2-8 207.8 kg/hm2, respectively.
基金Supported by the National Natural Science Foundation of China (41101165)~~
文摘[Objective] This study aimed to explore the impact of climate change on wheat cropping by using province-specific historical data during 1996-2007. [Method] We established a panel data econometric model with lagged wheat cropping area and province-specific fixed-effects model to control the unobserved factors. [Result] The results showed that the temperature positively affects wheat cropping area, while precipitation does not have such impact. [Conclusion] The study provided empirical evidence for analysis of the determinants of wheat cropping area in China.
基金Supported by the National Science and Technology Support Plan(2006BAD05B06-05)IPNI and IPI+3 种基金the Natural Sciences Founda-tion of Guangxi(No.0448023)the Natural Sciences Foundationof Guangxi Academy of Agricultural Sciences(No.2007001(Z))Project Ministry of Agriculture of the people s Republic of China(WX-2-07-13)National Key Technology R&D program(2007BAD30B03)~~
文摘The sugarcane is a main sugar crop in China. The seasonal drying is one of the problems that influence the improvement of output and quality of sugarcane in China. The experimental results for the water requirement and fertigation of the sugarcane showed, that the distribution of the rainfall in spring, autumn and winter, all could not suit the requirements for sugarcane growth. Detailedly, it can suit that sugarcane requirement of 74.4%, 68.6% and 35.7% respectively at seedling emerging stage, tillering stage and mature stage according to sugarcane growth. The drought has already limited the yield of sugarcane. Application of fertigation can enhance the fertilizer use efficiency, and it is also a water saving technique in sugarcane production.