Objective: The aim of this study was to investigate the effect of grape proanthocyanidins(GPC) on the growth and angiogenesis of hepatocellular carcinoma H22 cells xenograft in mice. Methods: The xenograft model was e...Objective: The aim of this study was to investigate the effect of grape proanthocyanidins(GPC) on the growth and angiogenesis of hepatocellular carcinoma H22 cells xenograft in mice. Methods: The xenograft model was established using injected subcutaneously H22 cells into the right axilla of the mice. Each group was treated with different doses of GPC and Endostar. All these treatments were maintained for 10 days, and mice were sacrificed. The xenograft tumors in mice were measured. The proliferation activity level of H22 cells was determined by MTT assay, and the levels of vascular endothelial growth factor(VEGF) protein were examined by immunohistochemistry. Results: When treated with 50, 100 and 200 mg/kg of GPC and Endostar, the tumor inhibition rates were 13.17%, 23.37%, 36.15% and 14.71%, respectively. The tumor weight of xenograft was significantly lighter in high GPC group than the control group(P < 0.05). The ODs in GPC groups were 0.835, 0.666 and 0.519, respectively. The absorbances in middle and high GPC groups were statistically significant, compared with control group(P < 0.01). Immunohistochemical technique showed the expression of VEGF of the GPC groups was downregulated significantly compared with the control group(P < 0.01). Conclusion: GPC can inhibit the growth of hepatocellular carcinoma H22 cell xenograft in mice. The inhibition of angiogenesis by the down-regulation of VEGF expression may play a key role in the anti-neoplastic effect of GPC.展开更多
基金supported by Department of Oncology, the Affiliated Hospital of Qingdao University, China
文摘Objective: The aim of this study was to investigate the effect of grape proanthocyanidins(GPC) on the growth and angiogenesis of hepatocellular carcinoma H22 cells xenograft in mice. Methods: The xenograft model was established using injected subcutaneously H22 cells into the right axilla of the mice. Each group was treated with different doses of GPC and Endostar. All these treatments were maintained for 10 days, and mice were sacrificed. The xenograft tumors in mice were measured. The proliferation activity level of H22 cells was determined by MTT assay, and the levels of vascular endothelial growth factor(VEGF) protein were examined by immunohistochemistry. Results: When treated with 50, 100 and 200 mg/kg of GPC and Endostar, the tumor inhibition rates were 13.17%, 23.37%, 36.15% and 14.71%, respectively. The tumor weight of xenograft was significantly lighter in high GPC group than the control group(P < 0.05). The ODs in GPC groups were 0.835, 0.666 and 0.519, respectively. The absorbances in middle and high GPC groups were statistically significant, compared with control group(P < 0.01). Immunohistochemical technique showed the expression of VEGF of the GPC groups was downregulated significantly compared with the control group(P < 0.01). Conclusion: GPC can inhibit the growth of hepatocellular carcinoma H22 cell xenograft in mice. The inhibition of angiogenesis by the down-regulation of VEGF expression may play a key role in the anti-neoplastic effect of GPC.