Fourteen plots were chosen along with the altitude of 1600-2600 m in Guandi Mountain, Shanxi Province, China to investigate all the trees in the plots, and the species diversity indexes were calculated for analyzing t...Fourteen plots were chosen along with the altitude of 1600-2600 m in Guandi Mountain, Shanxi Province, China to investigate all the trees in the plots, and the species diversity indexes were calculated for analyzing the effects of altitudinal gradient on plant species diversity. The results showed that the order of dominant species from low altitude to high altitude is as Quercus liaotungensis Koidz, Pinus tabulaeformis, Betula platyphylla, B. albo-sinensis, Picea wilsonii, P. Meyeri and Larix principis-rupprechtii. With altitude increasing, the average height and DBH of the arbor firstly increase and then decrease, the maximal height and DBH of the arbor present the unimodal variable trend, the maximal height of coniferous and broad-leaved trees firstly increases and then decreases, the maximal DBH of broad-leaf trees has no clear fluctuation, and the maximal DBH of the needle-leaf trees decreases gradually. Moreover, in middle altitudinal communities (the altitude of 1900-2200 m), the maximal height and DBH of the needle-leaf trees are larger than these of broad-leaf trees. Both Shannon-wiener index and Margalef index of the communities present the unimodal variable trend, with a peak in the mid-altitude. Plant species diversity in the mid-altitude (1900-2200 m) is higher than that of the low altitude (1600-1900 m) and the high altitude (2200-2600 m). In addition, the unimodal variable trend of α species diversity is clearly correlated with the altitudinal gradient. The change of plant species diversity is significantly correlated with the altitudinal gradient, and also related to the community structure, the community composition, the feature of species and the human disturbance.展开更多
Upon the analogy of definition of heterosis and inbreeding depresstion in terms of population genetics, the heterosis is thought to be evaluated overall with fitness. By establishing a mathematical model, the equilibr...Upon the analogy of definition of heterosis and inbreeding depresstion in terms of population genetics, the heterosis is thought to be evaluated overall with fitness. By establishing a mathematical model, the equilibrium status of three genotypes of random mating population (i. e. RR, Rr and rr) under different fitness, which exposes that heterosis is the precondition for multiallele to exist in the population. The heterosis protects the genetic diversity and makes the population owning a stronger self-control and evolution potential by improving the hetemzygote's fithess so as not to wash out different types of genes. It deepens Darwin's thoughts of individual section by making the individual fitness consonant with population fitness.展开更多
Floristic composition and vegetation structure were described for the woodland vegetation around Dello Menna, Bale zone, southeast Ethiopia. A total 50 (20 m ×20 m) quadrats were sampled to identify and describ...Floristic composition and vegetation structure were described for the woodland vegetation around Dello Menna, Bale zone, southeast Ethiopia. A total 50 (20 m ×20 m) quadrats were sampled to identify and describe plant community types, species diversity, richness and evenness and to relate the identified plant community types with some environ- mental factors and describe the population structure of woody plant species. In each quadrrat, data on species identity, abundance, height and Diameter at Breast Height (DBH) of woody plant species, altitude and slope were recorded. Vegetation classification was performed using PC - ORD software package. Sorensen's similarity coefficient was used to detect dissimilarities among communities. Shannon - Wiener diversity index, species richness and Shannon's evenness were computed to de- scribe species diversity of the plant community types. Results show that a total of 171 vascular plant species representing 53 families were re- corded. Fabaceae is the dominant family represented by 13 genera and 26 species (15%) followed by Asteraceae, Lamiaceae and Anacardiaceae with eight species each (4.6%). Based on the results of vegetation classi- fication, three plant communities (Dalbergia microphylla community, Grewia bicolar- Acacia brevispica community, and Combretum molle- Combretum collinum community) are recognized and described. Species richness, diversity and evenness varied among the plant communities.Species richness and diversity exhibit a bell - shaped pattern along alti- tude. Species turn over among communities more or less follow altitud- inal gradients. Tukey's pairwise comparison of means among the plant community types shows significant variations in altitude, implying that altitude is one of the most important factors determining the distribution of plant communities. The community Dalbergia microphylla type exhibits the highest species richness and diversity. Analysis of population structure of the dominant species reveals various patterns. Future research directions and recommendations are suggested for the sustainable utilization.展开更多
Bird communities were surveyed in natural deciduous forest of both slope area and valley area at Mt. Gyebangsan (3740 30 N, 12830 1 E), Gangwon Province, South Korea in winter, spring, summer and autumn from September...Bird communities were surveyed in natural deciduous forest of both slope area and valley area at Mt. Gyebangsan (3740 30 N, 12830 1 E), Gangwon Province, South Korea in winter, spring, summer and autumn from September 2000 to November 2001. The investigating results showed that there existed differences in the bird species composition, richness, bird species diversity, guild structure between slope area and valley area, and the vertical forest structure, especially coverage of understory, and diameter at breast height (DBH) distribution also had significant difference between the two study areas. The differences in habitat structure between the areas are very likely to have influences on how birds used the available habitat.展开更多
Understanding the response of understory vegetation to fire disturbance is vital to biodiversity conservation and management of boreal forests. We surveyed understory vascular plant richness and composition, and measu...Understanding the response of understory vegetation to fire disturbance is vital to biodiversity conservation and management of boreal forests. We surveyed understory vascular plant richness and composition, and measured related environmental variables along a toposequence within three successional stages, initial (3 years post-fire), early (13 years post-fire) and late (〉1oo years post-fire) successional stages. Using permutation multivariate ANOVA and nonmetric multidimensional scaling, we analyzed how understory species richness and composition change as time-since-fire proceeds, and their correlative relationships with environmental variables. Species richness and composition showed significant differences among the three successional stages. Understory species richness and abundance were significantly associated with time-since-fire, topographic position, elevation and organic layer depth. Among these variables, time-since-fire had the strongest effect and topographic position was the second major factor on affecting understorycommunity assembly. In overwhelmed the effects addition, time-since-fire of soil pH in the initial successional stage and gravimetric soil moisture in early and late successional stages on understory species composition展开更多
Biological soil crusts are essential components of arid ecosystems. We examined the variations in microfungal communities inhabiting different biological crust types in the vicinity of the Shapotou Research Station in...Biological soil crusts are essential components of arid ecosystems. We examined the variations in microfungal communities inhabiting different biological crust types in the vicinity of the Shapotou Research Station in the Tengger Desert, China. A total of 134 species from 66 genera were isolated using the soil dilution plate method. The mycobiota of the crusts from the Tengger Desert, similar to that of the Negev Desert in Israel, was dominated by melanin-containing species with large multicellular spores. Abundance of these xeric species increased spatially with increasing xeric conditions from moss-dominated to cyanobacterial crusts. Density of microfungal isolates displayed the opposite trend and was positively correlated with chlorophyll content, indicating the possible significant influence of organic matter content and wetness duration on fungal biomass. Within a chronosequence of the localities of different periods after sand stabilization with revegetation, little variations were revealed in species composition and isolate density of the crust microfungal communities, while a tendency towards a decrease in the community diversity level with the crust age was noted Microfungal communities from stabilized localities differed from those of the natural localities in abundance of the dominant and some frequent species, and in the fluctuations of diversity characteristics between the cyanobacterial and moss-dominated crusts. The variations in mycobiotie parameters in the soil crusts of the Tengger Desert were apparently associated with the topographically induced variations in abiotic conditions, while the differences in microfungal community of soil crusts between the Tengger and Negev deserts, such as the significantly higher abundance of thermotolerant species in the crusts of the Tengger Deserts, were caused by the principal differences in their precipitation regimes, associated with different rainy seasons, winter and summer in the Negev and Tengger deserts, respectively.展开更多
基金This paper was supported by Shanxi Natural Science Foun-dation (20001090)
文摘Fourteen plots were chosen along with the altitude of 1600-2600 m in Guandi Mountain, Shanxi Province, China to investigate all the trees in the plots, and the species diversity indexes were calculated for analyzing the effects of altitudinal gradient on plant species diversity. The results showed that the order of dominant species from low altitude to high altitude is as Quercus liaotungensis Koidz, Pinus tabulaeformis, Betula platyphylla, B. albo-sinensis, Picea wilsonii, P. Meyeri and Larix principis-rupprechtii. With altitude increasing, the average height and DBH of the arbor firstly increase and then decrease, the maximal height and DBH of the arbor present the unimodal variable trend, the maximal height of coniferous and broad-leaved trees firstly increases and then decreases, the maximal DBH of broad-leaf trees has no clear fluctuation, and the maximal DBH of the needle-leaf trees decreases gradually. Moreover, in middle altitudinal communities (the altitude of 1900-2200 m), the maximal height and DBH of the needle-leaf trees are larger than these of broad-leaf trees. Both Shannon-wiener index and Margalef index of the communities present the unimodal variable trend, with a peak in the mid-altitude. Plant species diversity in the mid-altitude (1900-2200 m) is higher than that of the low altitude (1600-1900 m) and the high altitude (2200-2600 m). In addition, the unimodal variable trend of α species diversity is clearly correlated with the altitudinal gradient. The change of plant species diversity is significantly correlated with the altitudinal gradient, and also related to the community structure, the community composition, the feature of species and the human disturbance.
文摘Upon the analogy of definition of heterosis and inbreeding depresstion in terms of population genetics, the heterosis is thought to be evaluated overall with fitness. By establishing a mathematical model, the equilibrium status of three genotypes of random mating population (i. e. RR, Rr and rr) under different fitness, which exposes that heterosis is the precondition for multiallele to exist in the population. The heterosis protects the genetic diversity and makes the population owning a stronger self-control and evolution potential by improving the hetemzygote's fithess so as not to wash out different types of genes. It deepens Darwin's thoughts of individual section by making the individual fitness consonant with population fitness.
基金supported by The Canadian International Development Agency (CIDA),Sinana Agricultural Research Center (SARC)
文摘Floristic composition and vegetation structure were described for the woodland vegetation around Dello Menna, Bale zone, southeast Ethiopia. A total 50 (20 m ×20 m) quadrats were sampled to identify and describe plant community types, species diversity, richness and evenness and to relate the identified plant community types with some environ- mental factors and describe the population structure of woody plant species. In each quadrrat, data on species identity, abundance, height and Diameter at Breast Height (DBH) of woody plant species, altitude and slope were recorded. Vegetation classification was performed using PC - ORD software package. Sorensen's similarity coefficient was used to detect dissimilarities among communities. Shannon - Wiener diversity index, species richness and Shannon's evenness were computed to de- scribe species diversity of the plant community types. Results show that a total of 171 vascular plant species representing 53 families were re- corded. Fabaceae is the dominant family represented by 13 genera and 26 species (15%) followed by Asteraceae, Lamiaceae and Anacardiaceae with eight species each (4.6%). Based on the results of vegetation classi- fication, three plant communities (Dalbergia microphylla community, Grewia bicolar- Acacia brevispica community, and Combretum molle- Combretum collinum community) are recognized and described. Species richness, diversity and evenness varied among the plant communities.Species richness and diversity exhibit a bell - shaped pattern along alti- tude. Species turn over among communities more or less follow altitud- inal gradients. Tukey's pairwise comparison of means among the plant community types shows significant variations in altitude, implying that altitude is one of the most important factors determining the distribution of plant communities. The community Dalbergia microphylla type exhibits the highest species richness and diversity. Analysis of population structure of the dominant species reveals various patterns. Future research directions and recommendations are suggested for the sustainable utilization.
文摘Bird communities were surveyed in natural deciduous forest of both slope area and valley area at Mt. Gyebangsan (3740 30 N, 12830 1 E), Gangwon Province, South Korea in winter, spring, summer and autumn from September 2000 to November 2001. The investigating results showed that there existed differences in the bird species composition, richness, bird species diversity, guild structure between slope area and valley area, and the vertical forest structure, especially coverage of understory, and diameter at breast height (DBH) distribution also had significant difference between the two study areas. The differences in habitat structure between the areas are very likely to have influences on how birds used the available habitat.
基金funded by the National Natural Science Foundation of China (Grant Nos. 31270511, 41501200)
文摘Understanding the response of understory vegetation to fire disturbance is vital to biodiversity conservation and management of boreal forests. We surveyed understory vascular plant richness and composition, and measured related environmental variables along a toposequence within three successional stages, initial (3 years post-fire), early (13 years post-fire) and late (〉1oo years post-fire) successional stages. Using permutation multivariate ANOVA and nonmetric multidimensional scaling, we analyzed how understory species richness and composition change as time-since-fire proceeds, and their correlative relationships with environmental variables. Species richness and composition showed significant differences among the three successional stages. Understory species richness and abundance were significantly associated with time-since-fire, topographic position, elevation and organic layer depth. Among these variables, time-since-fire had the strongest effect and topographic position was the second major factor on affecting understorycommunity assembly. In overwhelmed the effects addition, time-since-fire of soil pH in the initial successional stage and gravimetric soil moisture in early and late successional stages on understory species composition
基金the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (No. 2011T1Z16)Israeli Ministry of Absorption for financial support of this research
文摘Biological soil crusts are essential components of arid ecosystems. We examined the variations in microfungal communities inhabiting different biological crust types in the vicinity of the Shapotou Research Station in the Tengger Desert, China. A total of 134 species from 66 genera were isolated using the soil dilution plate method. The mycobiota of the crusts from the Tengger Desert, similar to that of the Negev Desert in Israel, was dominated by melanin-containing species with large multicellular spores. Abundance of these xeric species increased spatially with increasing xeric conditions from moss-dominated to cyanobacterial crusts. Density of microfungal isolates displayed the opposite trend and was positively correlated with chlorophyll content, indicating the possible significant influence of organic matter content and wetness duration on fungal biomass. Within a chronosequence of the localities of different periods after sand stabilization with revegetation, little variations were revealed in species composition and isolate density of the crust microfungal communities, while a tendency towards a decrease in the community diversity level with the crust age was noted Microfungal communities from stabilized localities differed from those of the natural localities in abundance of the dominant and some frequent species, and in the fluctuations of diversity characteristics between the cyanobacterial and moss-dominated crusts. The variations in mycobiotie parameters in the soil crusts of the Tengger Desert were apparently associated with the topographically induced variations in abiotic conditions, while the differences in microfungal community of soil crusts between the Tengger and Negev deserts, such as the significantly higher abundance of thermotolerant species in the crusts of the Tengger Deserts, were caused by the principal differences in their precipitation regimes, associated with different rainy seasons, winter and summer in the Negev and Tengger deserts, respectively.