How to restore the destroyed forest after forest fire is a key question that man must face. This paper reviewed the research situation and history on the forest restoration burned blanks and summed up the research met...How to restore the destroyed forest after forest fire is a key question that man must face. This paper reviewed the research situation and history on the forest restoration burned blanks and summed up the research methods used into four scales: seed-bank scale, community scale, ecosystem scale and landscape scale. The new technologies such as GIS & Remote Sensing used to vegetation restoration were also summarized. The strategies and developing trend of vegetation restoration research on burned blanks were discussed.展开更多
We investigate statistical properties of multispecies competition ecosystems subjected to both symmetric and asymmetric dichotomous noises. The expression of the stationary probability distribution function (SPDF) i...We investigate statistical properties of multispecies competition ecosystems subjected to both symmetric and asymmetric dichotomous noises. The expression of the stationary probability distribution function (SPDF) is analytically derived by means of mean-field approximation, and verified by stochastic simulations. The results indicate that: (i) A noise amplitude (a0), a noise autocorrelation time (τ0) and a noise symmetry parameter (k) all can affect the SPDF; (ii) There is an optimal τ0, which makes the mean value of population density be maximal, near which a transition takes place, i.e., the stationary mean value of species density ((x)st) suddenly falls to a lower constant, (iii) As k decreases, the maximum of (x)xt and the optimal 70 increase. The parameter planes of TO -- a20 and τ0- k for the transition are plotted.展开更多
The Bale Mountains of Ethiopia represent the world's largest continuous extent of afroalpine habitat. With a peak combined density of over 8000 individuals/km2, the endemic giant mole rat Tachyoryctes macrocephalus, ...The Bale Mountains of Ethiopia represent the world's largest continuous extent of afroalpine habitat. With a peak combined density of over 8000 individuals/km2, the endemic giant mole rat Tachyoryctes macrocephalus, Blick's grass rat Arvi- canthis blicki and the brush-furred mouse Lophuromys melanonyx are the dominant wild herbivores within this ecosystem and may be affected by the presence of high densities of domestic livestock. The purpose of this study was to establish whether these endemic rodent populations could respond to the removal of grazing pressure inside three 0.25 hectare livestock exclosures (paired with grazed control plots) and to determine whether such response was mediated through concomitant changes in the vegetation structure. We hypothesised that livestock grazing negatively affects endemic rodent populations through competition or increased predation risk and we predicted an increase in rodent biomass following the removal of grazing pressure. We found no evidence of rodent populations responding to the removal of livestock after fourteen months. The short-term nature of the ex- perimental design, environmental fluctuations and the ecosystem's inherent stochasticity may explain the apparent lack of a sig- nificant response. However, while this study is inconclusive, it emphasises the need for more long-term experimental investiga- tions to assess the effects of domestic grazers on vegetation and on dependent communities. The effects of rapidly increasing livestock numbers in the Bale Mountains will require continued close monitoring of vegetation and endemic animal communities as the afroalpine is altered by external biotic and abiotic forces .展开更多
Population genomic approaches are making rapid inroads in the study of non-model organisms, including marine taxa. To date, these marine studies have predominantly focused on rudimentary metrics describing the spatial...Population genomic approaches are making rapid inroads in the study of non-model organisms, including marine taxa. To date, these marine studies have predominantly focused on rudimentary metrics describing the spatial and environmental context of their study region (e.g., geographical distance, average sea surface temperature, average salinity). We contend that a more nuanced and considered approach to quantifying seascape dynamics and patterns can strengthen population genomic investigations and help identify spatial, temporal, and environmental factors associated with differing selective regimes or demographic histories. Nevertheless, approaches for quantifying marine landscapes are complicated. Characteristic features of the marine environment, including pelagic living in flowing water (experienced by most marine taxa at some point in their life cycle), require a well-designed spatial-temporal sampling strategy and analysis. Many genetic summary statistics used to describe populations may be inappropriate for marine species with large population sizes, large species ranges, stochastic recruitment, and asymmetrical gene flow. Finally, statistical approaches for testing associations between seascapes and population genomic patterns are still maturing with no single approach able to capture all relevant considerations. None of these issues are completely unique to marine systems and therefore similar issues and solutions will be shared for many organisms regardless of habitat. Here, we outline goals and spatial approaches for land- scape genomics with an emphasis on marine systems and review the growing empirical literature on seascape genomics. We review established tools and approaches and highlight promising new strategies to overcome select issues including a strategy to spatially optimize sampling. Despite the many challenges, we argue that marine systems may be especially well suited for identifying candidate genomic regions under environmentally mediated selection and that seascape genomic approaches are especially useful for identifying robust locus-by-environment associations.展开更多
文摘How to restore the destroyed forest after forest fire is a key question that man must face. This paper reviewed the research situation and history on the forest restoration burned blanks and summed up the research methods used into four scales: seed-bank scale, community scale, ecosystem scale and landscape scale. The new technologies such as GIS & Remote Sensing used to vegetation restoration were also summarized. The strategies and developing trend of vegetation restoration research on burned blanks were discussed.
基金Supported by the Yunnan Provincial Foundation of China under Grant Nos.2009CD036 and 08Z0015the National Natural Science Foundations of China under Grant Nos.50734009 and 10865006
文摘We investigate statistical properties of multispecies competition ecosystems subjected to both symmetric and asymmetric dichotomous noises. The expression of the stationary probability distribution function (SPDF) is analytically derived by means of mean-field approximation, and verified by stochastic simulations. The results indicate that: (i) A noise amplitude (a0), a noise autocorrelation time (τ0) and a noise symmetry parameter (k) all can affect the SPDF; (ii) There is an optimal τ0, which makes the mean value of population density be maximal, near which a transition takes place, i.e., the stationary mean value of species density ((x)st) suddenly falls to a lower constant, (iii) As k decreases, the maximum of (x)xt and the optimal 70 increase. The parameter planes of TO -- a20 and τ0- k for the transition are plotted.
文摘The Bale Mountains of Ethiopia represent the world's largest continuous extent of afroalpine habitat. With a peak combined density of over 8000 individuals/km2, the endemic giant mole rat Tachyoryctes macrocephalus, Blick's grass rat Arvi- canthis blicki and the brush-furred mouse Lophuromys melanonyx are the dominant wild herbivores within this ecosystem and may be affected by the presence of high densities of domestic livestock. The purpose of this study was to establish whether these endemic rodent populations could respond to the removal of grazing pressure inside three 0.25 hectare livestock exclosures (paired with grazed control plots) and to determine whether such response was mediated through concomitant changes in the vegetation structure. We hypothesised that livestock grazing negatively affects endemic rodent populations through competition or increased predation risk and we predicted an increase in rodent biomass following the removal of grazing pressure. We found no evidence of rodent populations responding to the removal of livestock after fourteen months. The short-term nature of the ex- perimental design, environmental fluctuations and the ecosystem's inherent stochasticity may explain the apparent lack of a sig- nificant response. However, while this study is inconclusive, it emphasises the need for more long-term experimental investiga- tions to assess the effects of domestic grazers on vegetation and on dependent communities. The effects of rapidly increasing livestock numbers in the Bale Mountains will require continued close monitoring of vegetation and endemic animal communities as the afroalpine is altered by external biotic and abiotic forces .
文摘Population genomic approaches are making rapid inroads in the study of non-model organisms, including marine taxa. To date, these marine studies have predominantly focused on rudimentary metrics describing the spatial and environmental context of their study region (e.g., geographical distance, average sea surface temperature, average salinity). We contend that a more nuanced and considered approach to quantifying seascape dynamics and patterns can strengthen population genomic investigations and help identify spatial, temporal, and environmental factors associated with differing selective regimes or demographic histories. Nevertheless, approaches for quantifying marine landscapes are complicated. Characteristic features of the marine environment, including pelagic living in flowing water (experienced by most marine taxa at some point in their life cycle), require a well-designed spatial-temporal sampling strategy and analysis. Many genetic summary statistics used to describe populations may be inappropriate for marine species with large population sizes, large species ranges, stochastic recruitment, and asymmetrical gene flow. Finally, statistical approaches for testing associations between seascapes and population genomic patterns are still maturing with no single approach able to capture all relevant considerations. None of these issues are completely unique to marine systems and therefore similar issues and solutions will be shared for many organisms regardless of habitat. Here, we outline goals and spatial approaches for land- scape genomics with an emphasis on marine systems and review the growing empirical literature on seascape genomics. We review established tools and approaches and highlight promising new strategies to overcome select issues including a strategy to spatially optimize sampling. Despite the many challenges, we argue that marine systems may be especially well suited for identifying candidate genomic regions under environmentally mediated selection and that seascape genomic approaches are especially useful for identifying robust locus-by-environment associations.