The first comprehensive study of abundance, richness and distribution of Mbuna in Lake Malawi was carried out in the 1980s. The present study examined changes of species richness and abundance of Mbuna with time. Most...The first comprehensive study of abundance, richness and distribution of Mbuna in Lake Malawi was carried out in the 1980s. The present study examined changes of species richness and abundance of Mbuna with time. Most sites demarcated during the 1980s survey were explored in order to determine changes in abundance and composition of Mbuna over a period of more than 20 years Chi-square analysis revealed significant difference (p 〈 0.05) in abundance of Mbuna between 1983 and 2005 with the exception of Chinyankhwazi and Chinyamwezi where the difference was not significant (p 〉 0.05). Cluster analysis showed changes in species composition between 1983 and 2005 in various sites. Generally, there were more species lost in a given area than new species observed in 2005. Decline in Mbuna species richness might have been caused by siltation, harvesting of Mbuna for food and ornamental fish trade while new species were mostly introduced through translocation from one part of the lake to another.展开更多
Aims Long-term heavy grazing reduces plant diversity and ecosystem function by intensifying nitrogen(N)and water limitation.In contrast,the absence of biomass removal can cause species loss by elevating light competit...Aims Long-term heavy grazing reduces plant diversity and ecosystem function by intensifying nitrogen(N)and water limitation.In contrast,the absence of biomass removal can cause species loss by elevating light competition and weakening community stability,which is exacerbated by N and water enrichment.Hence,how to maintain species diversity and community stability is still a huge challenge for sustainable management of worldwide grasslands.Methods We conducted a 4-year manipulated experiment in six long-term grazing blocks to explore combination of resource additions and biomass removal(increased water,N and light availability)on species richness and community stability in semiarid grasslands of Inner Mongolia,China.Important Findings In all blocks treated with the combination of resource additions and biomass removal,primary productivity increased and species richness and community stability were maintained over 4 years of experiment.At both species and plant functional group(PFG)levels,the aboveground biomass of treated plants remained temporally stable in treatments with the combination of N and/or water addition and biomass removal.The maintenance of species richness was primarily caused by the biomass removal,which could increase the amount of light exposure for grasses under resource enrichment.Both species asynchrony and stability of PFGs contributed to the high temporal stability observed in these communities.Our results indicate that management practices of combined resource enrichment with biomass removal,such as grazing or mowing,could not only enhance primary productivity but also maintain plant species diversity,species asynchrony and community stability.Furthermore,as overgrazing-induced degradation and resource enrichment-induced biodiversity loss continue to be major problems worldwide,our findings have important implications for adaptive management in semiarid grasslands and beyond.展开更多
文摘The first comprehensive study of abundance, richness and distribution of Mbuna in Lake Malawi was carried out in the 1980s. The present study examined changes of species richness and abundance of Mbuna with time. Most sites demarcated during the 1980s survey were explored in order to determine changes in abundance and composition of Mbuna over a period of more than 20 years Chi-square analysis revealed significant difference (p 〈 0.05) in abundance of Mbuna between 1983 and 2005 with the exception of Chinyankhwazi and Chinyamwezi where the difference was not significant (p 〉 0.05). Cluster analysis showed changes in species composition between 1983 and 2005 in various sites. Generally, there were more species lost in a given area than new species observed in 2005. Decline in Mbuna species richness might have been caused by siltation, harvesting of Mbuna for food and ornamental fish trade while new species were mostly introduced through translocation from one part of the lake to another.
基金supported by grants from the National Natural Science Foundation of China(31630010 and 31320103916).
文摘Aims Long-term heavy grazing reduces plant diversity and ecosystem function by intensifying nitrogen(N)and water limitation.In contrast,the absence of biomass removal can cause species loss by elevating light competition and weakening community stability,which is exacerbated by N and water enrichment.Hence,how to maintain species diversity and community stability is still a huge challenge for sustainable management of worldwide grasslands.Methods We conducted a 4-year manipulated experiment in six long-term grazing blocks to explore combination of resource additions and biomass removal(increased water,N and light availability)on species richness and community stability in semiarid grasslands of Inner Mongolia,China.Important Findings In all blocks treated with the combination of resource additions and biomass removal,primary productivity increased and species richness and community stability were maintained over 4 years of experiment.At both species and plant functional group(PFG)levels,the aboveground biomass of treated plants remained temporally stable in treatments with the combination of N and/or water addition and biomass removal.The maintenance of species richness was primarily caused by the biomass removal,which could increase the amount of light exposure for grasses under resource enrichment.Both species asynchrony and stability of PFGs contributed to the high temporal stability observed in these communities.Our results indicate that management practices of combined resource enrichment with biomass removal,such as grazing or mowing,could not only enhance primary productivity but also maintain plant species diversity,species asynchrony and community stability.Furthermore,as overgrazing-induced degradation and resource enrichment-induced biodiversity loss continue to be major problems worldwide,our findings have important implications for adaptive management in semiarid grasslands and beyond.