期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
(m+n,t+1)-门限秘密共享方案
1
作者 滕菲 刘焕平 《哈尔滨师范大学自然科学学报》 CAS 2009年第6期66-69,共4页
秘密共享方案一般集中于Shamir(k,n)-门限方案的研究.有时考虑到参与者地位的特殊性,需要修改(k,n)-门限方案,以使其满足特殊的需要.(m+n,t+1)-门限方案就是一类特殊的门限方案.通过对(m+n,t+1)-门限方案进行的研究,构造了一类(m+n,t+1)... 秘密共享方案一般集中于Shamir(k,n)-门限方案的研究.有时考虑到参与者地位的特殊性,需要修改(k,n)-门限方案,以使其满足特殊的需要.(m+n,t+1)-门限方案就是一类特殊的门限方案.通过对(m+n,t+1)-门限方案进行的研究,构造了一类(m+n,t+1)-秘密共享矩阵;并且利用此矩阵,给出了一种实现(m+n,t+1)-门限方案的方法. 展开更多
关键词 (m+n t+1)-门限方案 秘密共享矩阵 (m+n t+1)-秘密共享矩阵
下载PDF
A New Method to Construct Secret Sharing Schemes Based on Linear Codes
2
作者 Selda Calkavur 《Computer Technology and Application》 2015年第2期89-94,共6页
Secret sharing is an important topic in cryptography and has applications in information security. The coding theory has been an important role in the constructing of secret sharing schemes. It is known that every lin... Secret sharing is an important topic in cryptography and has applications in information security. The coding theory has been an important role in the constructing of secret sharing schemes. It is known that every linear code can be used to construct secret sharing schemes. So, we use the parity-check matrix of a linear code to construct secret sharing schemes based on linear codes. We also describe some techniques to recover the secret and determine the access structure of the new scheme. In this paper, we use the Massey's secret sharing scheme. 展开更多
关键词 Linear code parity-check matrix secret sharing scheme minimal codeword minimal access set.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部