期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
三参数 Weibull 分布的秩拟合最优化法 被引量:11
1
作者 倪侃 张圣坤 《上海交通大学学报》 EI CAS CSCD 北大核心 1998年第11期21-25,共5页
对于给定的一组疲劳寿命试验数据,首先求得该样本顺序统计量的平均秩(或中位秩),然后由三参数Weibul分布对此平均秩进行拟合.通过对线性拟合相关系数的最优化求解来确定Weibul分布的位置参数,再由最小二乘拟合便可估... 对于给定的一组疲劳寿命试验数据,首先求得该样本顺序统计量的平均秩(或中位秩),然后由三参数Weibul分布对此平均秩进行拟合.通过对线性拟合相关系数的最优化求解来确定Weibul分布的位置参数,再由最小二乘拟合便可估计出Weibul分布的形状参数和尺度参数.该方法具有迭代收敛快且拟合精度高的特点. 展开更多
关键词 参数估计 最优化 韦伯分布 秩拟合 疲劳可靠性
下载PDF
新型深度矩阵分解及其在推荐系统中的应用 被引量:1
2
作者 史加荣 李金红 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2022年第3期171-182,共12页
个性化推荐在网络消费平台上发挥着越来越重要的角色。低秩和深度矩阵分解已广泛应用于推荐系统,并使推荐性能得以优化。为了克服传统矩阵分解的双线性性,深度矩阵分解基于用户和项目的特征向量,建立深度神经网络模型。现有方法在数据... 个性化推荐在网络消费平台上发挥着越来越重要的角色。低秩和深度矩阵分解已广泛应用于推荐系统,并使推荐性能得以优化。为了克服传统矩阵分解的双线性性,深度矩阵分解基于用户和项目的特征向量,建立深度神经网络模型。现有方法在数据规模较大且稀疏性较高时,表现出性能不佳及运行时间较长。为此,提出了一种新型深度矩阵分解模型。该模型的输入为用户和项目的隐特征向量,网络结构由两个并行的多层感知机和一个用于预测的加权内积算子组成。对于所建立的模型,设计了两阶段求解方法。先利用低秩矩阵拟合算法对缺失数据进行补全,从而确定了两个隐特征矩阵。再将所构建的特征工程作为深度神经网络的输入,建立输出为预测评分的非线性映射。在公开的推荐数据集上验证了所提模型的有效性。实验结果表明:与传统矩阵分解方法相比,所提方法极大地提高了推荐性能;与现有的深度矩阵分解方法相比,运行时间得到显著降低。 展开更多
关键词 推荐系统 矩阵 深度矩阵分解 深度神经网络 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部