The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff...The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff's equations. First, the differential equations of motion of the Birkhoffian system are written out. Secondly, 2n Birkhoff's variables are divided into two parts, and assume that a part of the variables is the functions of the remaining part of the variables and time. Thereby, the basic quasi-linear partial differential equations are established. If a complete solution of the basic partial differential equations is sought out, the solution of the problem is given by a set of algebraic equations. Since one can choose n arbitrary Birkhoff's variables as the functions of n remains of variables and time in a specific problem, the method has flexibility. The major difficulty of this method lies in finding a complete solution of the basic partial differential equation. Once one finds the complete solution, the motion of the systems can be obtained without doing further integration. Finally, two examples are given to illustrate the application of the results.展开更多
This paper introduces the use of partition of unity method for the development of a high order finite volume discretization scheme on unstructured grids for solving diffusion models based on partial differential equat...This paper introduces the use of partition of unity method for the development of a high order finite volume discretization scheme on unstructured grids for solving diffusion models based on partial differential equations.The unknown function and its gradient can be accurately reconstructed using high order optimal recovery based on radial basis functions.The methodology proposed is applied to the noise removal problem in functional surfaces and images.Numerical results demonstrate the effectiveness of the new numerical approach and provide experimental order of convergence.展开更多
In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by usi...In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by using the first integral method.展开更多
The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct m...The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schrodinger equation. When the modulous m → 1or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions.展开更多
This paper studies the nonlinear variational inequality with integro-differential term arising from valuation of American style double barrier option. First, the authors use the penalty method to transform the variati...This paper studies the nonlinear variational inequality with integro-differential term arising from valuation of American style double barrier option. First, the authors use the penalty method to transform the variational inequality into a nonlinear parabolic initial boundary problem(i.e., penalty problem). Second, the existence and uniqueness of solution to the penalty problem are proved by using the Scheafer fixed point theory. Third, the authors prove the existence of variational inequality' solution by showing the fact that the penalized PDE converges to the variational inequality. The uniqueness of solution to the variational inequality is also proved by contradiction.展开更多
This paper studies a class of forward-backward stochastic differential equations (FBSDE)in a general Markovian framework.The forward SDE represents a large class of strong Markov semimartingales,and the backward gener...This paper studies a class of forward-backward stochastic differential equations (FBSDE)in a general Markovian framework.The forward SDE represents a large class of strong Markov semimartingales,and the backward generator requires only mild regularity assumptions.The authors showthat the Four Step Scheme introduced by Ma,et al.(1994) is still effective in this case.Namely,the authors show that the adapted solution of the FBSDE exists and is unique over any prescribedtime duration;and the backward components can be determined explicitly by the forward componentvia the classical solution to a system of parabolic integro-partial differential equations.An importantconsequence the authors would like to draw from this fact is that,contrary to the general belief,in aMarkovian set-up the martingale representation theorem is no longer the reason for the well-posednessof the FBSDE,but rather a consequence of the existence of the solution of the decoupling integralpartialdifferential equation.Finally,the authors briefly discuss the possibility of reducing the regularityrequirements of the coefficients by using a scheme proposed by F.Delarue (2002) to the current case.展开更多
Backward doubly stochastic differential equations driven by Brownian motions and Poisson process (BDSDEP) with non-Lipschitz coefficients on random time interval are studied. The probabilistic interpretation for the...Backward doubly stochastic differential equations driven by Brownian motions and Poisson process (BDSDEP) with non-Lipschitz coefficients on random time interval are studied. The probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs) is treated with BDSDEP. Under non-Lipschitz conditions, the existence and uniqueness results for measurable solutions to BDSDEP are established via the smoothing technique. Then, the continuous depen- dence for solutions to BDSDEP is derived. Finally, the probabilistic interpretation for the solutions to a class of quasilinear SPDIEs is given.展开更多
This paper focuses on nonlocal integral boundary value problems for elliptic differential-operator equations. Here given conditions guarantee that maximal regularity and Fredholmness in L_p spaces. These results are a...This paper focuses on nonlocal integral boundary value problems for elliptic differential-operator equations. Here given conditions guarantee that maximal regularity and Fredholmness in L_p spaces. These results are applied to the Cauchy problem for abstract parabolic equations, its infinite systems and boundary value problems for anisotropic partial differential equations in mixed L_p norm.展开更多
Given a set of independent vector fields on a smooth manifold, we discuss how to find a function whose zero-level set is invariant under the flows of the vector fields. As an application, we study the solvability of o...Given a set of independent vector fields on a smooth manifold, we discuss how to find a function whose zero-level set is invariant under the flows of the vector fields. As an application, we study the solvability of overdetermined partial differential equations: Given a system of quasi-linear PDEs of first order for one unknown function we find a necessary and sufficient condition for the existence of solutions in terms of the second jet of the coefficients. This generalizes to certain quasi-linear systems of first order for several unknown functions.展开更多
We present a systematic procedure to derive discrete analogues of integrable PDEs via Hirota’s bilinear method.This approach is mainly based on the compatibility between an integrable system and its B¨acklund tr...We present a systematic procedure to derive discrete analogues of integrable PDEs via Hirota’s bilinear method.This approach is mainly based on the compatibility between an integrable system and its B¨acklund transformation.We apply this procedure to several equations,including the extended Korteweg-deVries(Kd V)equation,the extended Kadomtsev-Petviashvili(KP)equation,the extended Boussinesq equation,the extended Sawada-Kotera(SK)equation and the extended Ito equation,and obtain their associated semidiscrete analogues.In the continuum limit,these differential-difference systems converge to their corresponding smooth equations.For these new integrable systems,their B¨acklund transformations and Lax pairs are derived.展开更多
The authors investigate a kind of degenerate quadratic Hamiltonian systems with saddle-loop. Under quadratic perturbations, it is proved that the perturbed system has at most two limit cycles in the finite plane. The ...The authors investigate a kind of degenerate quadratic Hamiltonian systems with saddle-loop. Under quadratic perturbations, it is proved that the perturbed system has at most two limit cycles in the finite plane. The proof relies on a careful analysis of a related Abelian integral.展开更多
基金The National Natural Science Foundation of China(No.10972151)
文摘The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff's equations. First, the differential equations of motion of the Birkhoffian system are written out. Secondly, 2n Birkhoff's variables are divided into two parts, and assume that a part of the variables is the functions of the remaining part of the variables and time. Thereby, the basic quasi-linear partial differential equations are established. If a complete solution of the basic partial differential equations is sought out, the solution of the problem is given by a set of algebraic equations. Since one can choose n arbitrary Birkhoff's variables as the functions of n remains of variables and time in a specific problem, the method has flexibility. The major difficulty of this method lies in finding a complete solution of the basic partial differential equation. Once one finds the complete solution, the motion of the systems can be obtained without doing further integration. Finally, two examples are given to illustrate the application of the results.
基金supported by PRIN-MIUR-Cofin 2006by University of Bologna"Funds for selected research topics"
文摘This paper introduces the use of partition of unity method for the development of a high order finite volume discretization scheme on unstructured grids for solving diffusion models based on partial differential equations.The unknown function and its gradient can be accurately reconstructed using high order optimal recovery based on radial basis functions.The methodology proposed is applied to the noise removal problem in functional surfaces and images.Numerical results demonstrate the effectiveness of the new numerical approach and provide experimental order of convergence.
文摘In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by using the first integral method.
文摘The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schrodinger equation. When the modulous m → 1or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions.
基金supported by the National Science Foundation of China under Grant Nos.71171164 and 70471057the Doctorate Foundation of Northwestern Polytechnical University under Grant No.CX201235
文摘This paper studies the nonlinear variational inequality with integro-differential term arising from valuation of American style double barrier option. First, the authors use the penalty method to transform the variational inequality into a nonlinear parabolic initial boundary problem(i.e., penalty problem). Second, the existence and uniqueness of solution to the penalty problem are proved by using the Scheafer fixed point theory. Third, the authors prove the existence of variational inequality' solution by showing the fact that the penalized PDE converges to the variational inequality. The uniqueness of solution to the variational inequality is also proved by contradiction.
基金supported by the National Science Foundation under Grant Nos. #DMS 0505472, 0806017,and#DMS 0604309
文摘This paper studies a class of forward-backward stochastic differential equations (FBSDE)in a general Markovian framework.The forward SDE represents a large class of strong Markov semimartingales,and the backward generator requires only mild regularity assumptions.The authors showthat the Four Step Scheme introduced by Ma,et al.(1994) is still effective in this case.Namely,the authors show that the adapted solution of the FBSDE exists and is unique over any prescribedtime duration;and the backward components can be determined explicitly by the forward componentvia the classical solution to a system of parabolic integro-partial differential equations.An importantconsequence the authors would like to draw from this fact is that,contrary to the general belief,in aMarkovian set-up the martingale representation theorem is no longer the reason for the well-posednessof the FBSDE,but rather a consequence of the existence of the solution of the decoupling integralpartialdifferential equation.Finally,the authors briefly discuss the possibility of reducing the regularityrequirements of the coefficients by using a scheme proposed by F.Delarue (2002) to the current case.
基金supported by the National Natural Science Foundation of China (Nos. 10771122,11071145)the Shandong Provincial Natural Science Foundation of China (No. Y2006A08)+2 种基金the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No. 10921101)the National Basic Research Program of China (the 973 Program) (No. 2007CB814900)the Independent Innovation Foundation of Shandong University (No. 2010JQ010)
文摘Backward doubly stochastic differential equations driven by Brownian motions and Poisson process (BDSDEP) with non-Lipschitz coefficients on random time interval are studied. The probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs) is treated with BDSDEP. Under non-Lipschitz conditions, the existence and uniqueness results for measurable solutions to BDSDEP are established via the smoothing technique. Then, the continuous depen- dence for solutions to BDSDEP is derived. Finally, the probabilistic interpretation for the solutions to a class of quasilinear SPDIEs is given.
文摘This paper focuses on nonlocal integral boundary value problems for elliptic differential-operator equations. Here given conditions guarantee that maximal regularity and Fredholmness in L_p spaces. These results are applied to the Cauchy problem for abstract parabolic equations, its infinite systems and boundary value problems for anisotropic partial differential equations in mixed L_p norm.
基金supported by National Research Foundation of Republic of Korea(Grant Nos.2011-0008976 and 2010-0011841)
文摘Given a set of independent vector fields on a smooth manifold, we discuss how to find a function whose zero-level set is invariant under the flows of the vector fields. As an application, we study the solvability of overdetermined partial differential equations: Given a system of quasi-linear PDEs of first order for one unknown function we find a necessary and sufficient condition for the existence of solutions in terms of the second jet of the coefficients. This generalizes to certain quasi-linear systems of first order for several unknown functions.
基金supported by National Natural Science Foundation of China(Grant Nos.11331008 and 11201425)the Hong Kong Baptist University Faculty Research(Grant No.FRG2/11-12/065)the Hong Kong Research Grant Council(Grant No.GRF HKBU202512)
文摘We present a systematic procedure to derive discrete analogues of integrable PDEs via Hirota’s bilinear method.This approach is mainly based on the compatibility between an integrable system and its B¨acklund transformation.We apply this procedure to several equations,including the extended Korteweg-deVries(Kd V)equation,the extended Kadomtsev-Petviashvili(KP)equation,the extended Boussinesq equation,the extended Sawada-Kotera(SK)equation and the extended Ito equation,and obtain their associated semidiscrete analogues.In the continuum limit,these differential-difference systems converge to their corresponding smooth equations.For these new integrable systems,their B¨acklund transformations and Lax pairs are derived.
基金the National Natural Science Foundation of China (No.10101031. No. 10071097). Guangdong Natural Science Foundation (No. 001289)
文摘The authors investigate a kind of degenerate quadratic Hamiltonian systems with saddle-loop. Under quadratic perturbations, it is proved that the perturbed system has at most two limit cycles in the finite plane. The proof relies on a careful analysis of a related Abelian integral.