In this paper,making use of upper and lower solutions,we first prove the existence of the solu tion for integral differential equation of Volterra type.Then applying the theory of differential in equalities obtained,u...In this paper,making use of upper and lower solutions,we first prove the existence of the solu tion for integral differential equation of Volterra type.Then applying the theory of differential in equalities obtained,under the appropriate assumptions,by constructing the special function of upper and lower solutions,we demonstrate the existence of the solution for singularly preturbed integral differential equation of Volterra type,and give the uniformly valid approximate estimation.展开更多
In this paper, the existence of solutions is studied for nonlinear impulsive Volterra integral equations with infinite moments of impulse effect on the half line R^+ in Banach spaces.By the use of a new comparison res...In this paper, the existence of solutions is studied for nonlinear impulsive Volterra integral equations with infinite moments of impulse effect on the half line R^+ in Banach spaces.By the use of a new comparison result and recurrence method, the new existence theorems are achieved under a weaker compactness-type condition, which generalize and improve the related results for this class of equations with finite moments of impulse effect on finite interval and infinite moments of impulse effect on infinite interval.展开更多
By using fixed point index theory of cone mapping and extension method, this paper discusses the existence of multiple positive solution of nonlinear neutral integral equatious modeling infectious disease.
This paper considers the global existence and nonexistence of positive solutions for the following volterra integral equations wbers Matrix B is called a positive definite one, if all the principal minors have positi...This paper considers the global existence and nonexistence of positive solutions for the following volterra integral equations wbers Matrix B is called a positive definite one, if all the principal minors have positive detechants. By considering the existence of positivve solutions for algebra equations, it is proved that if I-A is a positive definite matrix,where I is an identity matrix, then (I) bas global positive solution 1 Otherwise, (I)has no continous nbndeereasing positive solution.展开更多
This paper concerns with the existence of solutions for the following fractional Kirchhoff problem with critical nonlinearity:where (-△)s is the fractional Laplacian operator with 0 〈 s 〈 1, 2s* = 2N/(N - 2s)...This paper concerns with the existence of solutions for the following fractional Kirchhoff problem with critical nonlinearity:where (-△)s is the fractional Laplacian operator with 0 〈 s 〈 1, 2s* = 2N/(N - 2s), N 〉 2s, p ∈ (1,2s*), θ∈ [1, 2s*/2), h is a nonnegative function and A is a real positive parameter. Using the Ekeland variational principle and the mountain pass theorem, we obtain the existence and multiplicity of solutions for the above problem for suitable parameter A 〉 0. Furthermore, under some appropriate assumptions, our result can be extended to the setting of a class of nonlocal integro-differential equations. The remarkable feature of this paper is the fact that the coefficient of fractional Laplace operator could be zero at zero, which implies that the above Kirchhoff problem is degenerate. Hence our results are new even in the Laplacian case.展开更多
Lipschitz continuous solutions to the Cauchy problem for 1-D first order quasi-linear hyperbolic systems are considered. Based on the methods of approximation and integral equations, the author gives two definitions o...Lipschitz continuous solutions to the Cauchy problem for 1-D first order quasi-linear hyperbolic systems are considered. Based on the methods of approximation and integral equations, the author gives two definitions of Lipschitz solutions to the Cauchy problem and proves the existence and uniqueness of solutions.展开更多
We show the existence and multiplicity of solutions to degenerate p(x)-Laplace equations with Leray-Lions type operators using direct methods and critical point theories in Calculus of Variations and prove the uniquen...We show the existence and multiplicity of solutions to degenerate p(x)-Laplace equations with Leray-Lions type operators using direct methods and critical point theories in Calculus of Variations and prove the uniqueness and nonnegativeness of solutions when the principal operator is monotone and the nonlinearity is nonincreasing. Our operator is of the most general form containing all previous ones and we also weaken assumptions on the operator and the nonlinearity to get the above results. Moreover, we do not impose the restricted condition on p(x) and the uniform monotonicity of the operator to show the existence of three distinct solutions.展开更多
We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:where rn is any positive integer satisfying 0 〈 2m 〈 n. We first prove ...We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:where rn is any positive integer satisfying 0 〈 2m 〈 n. We first prove that the positive solutions of (0.1) are super polyharmonic, i.e.,where x* = (x1,... ,Xn-1, --Xn) is the reflection of the point x about the plane Rn-1. Then, we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of (0.3), in which α can be any real number between 0 and n. By some Pohozaev type identities in integral forms, we prove a Liouville type theorem--the non-existence of positive solutions for (0.1).展开更多
文摘In this paper,making use of upper and lower solutions,we first prove the existence of the solu tion for integral differential equation of Volterra type.Then applying the theory of differential in equalities obtained,under the appropriate assumptions,by constructing the special function of upper and lower solutions,we demonstrate the existence of the solution for singularly preturbed integral differential equation of Volterra type,and give the uniformly valid approximate estimation.
文摘In this paper, the existence of solutions is studied for nonlinear impulsive Volterra integral equations with infinite moments of impulse effect on the half line R^+ in Banach spaces.By the use of a new comparison result and recurrence method, the new existence theorems are achieved under a weaker compactness-type condition, which generalize and improve the related results for this class of equations with finite moments of impulse effect on finite interval and infinite moments of impulse effect on infinite interval.
文摘By using fixed point index theory of cone mapping and extension method, this paper discusses the existence of multiple positive solution of nonlinear neutral integral equatious modeling infectious disease.
文摘This paper considers the global existence and nonexistence of positive solutions for the following volterra integral equations wbers Matrix B is called a positive definite one, if all the principal minors have positive detechants. By considering the existence of positivve solutions for algebra equations, it is proved that if I-A is a positive definite matrix,where I is an identity matrix, then (I) bas global positive solution 1 Otherwise, (I)has no continous nbndeereasing positive solution.
基金supported by National Natural Science Foundation of China(Grant Nos.11601515 and 11401574)the Fundamental Research Funds for the Central Universities(Grant No.3122015L014)the Doctoral Research Foundation of Heilongjiang Institute of Technology(Grant No.2013BJ15)
文摘This paper concerns with the existence of solutions for the following fractional Kirchhoff problem with critical nonlinearity:where (-△)s is the fractional Laplacian operator with 0 〈 s 〈 1, 2s* = 2N/(N - 2s), N 〉 2s, p ∈ (1,2s*), θ∈ [1, 2s*/2), h is a nonnegative function and A is a real positive parameter. Using the Ekeland variational principle and the mountain pass theorem, we obtain the existence and multiplicity of solutions for the above problem for suitable parameter A 〉 0. Furthermore, under some appropriate assumptions, our result can be extended to the setting of a class of nonlocal integro-differential equations. The remarkable feature of this paper is the fact that the coefficient of fractional Laplace operator could be zero at zero, which implies that the above Kirchhoff problem is degenerate. Hence our results are new even in the Laplacian case.
文摘Lipschitz continuous solutions to the Cauchy problem for 1-D first order quasi-linear hyperbolic systems are considered. Based on the methods of approximation and integral equations, the author gives two definitions of Lipschitz solutions to the Cauchy problem and proves the existence and uniqueness of solutions.
基金supported by the National Research Foundation of Korea Grant Funded by the Korea Government (Grant No. NRF-2015R1D1A3A01019789)
文摘We show the existence and multiplicity of solutions to degenerate p(x)-Laplace equations with Leray-Lions type operators using direct methods and critical point theories in Calculus of Variations and prove the uniqueness and nonnegativeness of solutions when the principal operator is monotone and the nonlinearity is nonincreasing. Our operator is of the most general form containing all previous ones and we also weaken assumptions on the operator and the nonlinearity to get the above results. Moreover, we do not impose the restricted condition on p(x) and the uniform monotonicity of the operator to show the existence of three distinct solutions.
文摘We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:where rn is any positive integer satisfying 0 〈 2m 〈 n. We first prove that the positive solutions of (0.1) are super polyharmonic, i.e.,where x* = (x1,... ,Xn-1, --Xn) is the reflection of the point x about the plane Rn-1. Then, we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of (0.3), in which α can be any real number between 0 and n. By some Pohozaev type identities in integral forms, we prove a Liouville type theorem--the non-existence of positive solutions for (0.1).