Integral method is employed in this paper to alleviate the error accumulation of differential equation discretization about time variant t in Time Domain Finite Element Method (TDFEM) for electromagnetic simulation. T...Integral method is employed in this paper to alleviate the error accumulation of differential equation discretization about time variant t in Time Domain Finite Element Method (TDFEM) for electromagnetic simulation. The error growth and the stability condition of the presented method and classical central difference scheme are analyzed. The electromagnetic responses of 2D lossless cavities are investigated with TDFEM; high accuracy is validated with numerical results presented.展开更多
The Finite volume backward Euler difference method is established to discuss two-dimensional parabolic integro-differential equations.These results are new for finite volume element methods for parabolic integro-diffe...The Finite volume backward Euler difference method is established to discuss two-dimensional parabolic integro-differential equations.These results are new for finite volume element methods for parabolic integro-differential equations.展开更多
基金the National Natural Science Foundation of China (No.60601024).
文摘Integral method is employed in this paper to alleviate the error accumulation of differential equation discretization about time variant t in Time Domain Finite Element Method (TDFEM) for electromagnetic simulation. The error growth and the stability condition of the presented method and classical central difference scheme are analyzed. The electromagnetic responses of 2D lossless cavities are investigated with TDFEM; high accuracy is validated with numerical results presented.
基金Supported by the NSF of China(4080502090511009+2 种基金107020506070401560877001)
文摘The Finite volume backward Euler difference method is established to discuss two-dimensional parabolic integro-differential equations.These results are new for finite volume element methods for parabolic integro-differential equations.