New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bendin...New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bending stresses of circular plates with movable and immovable edges under uniform pressures or a central point load.The shortcomings existing in the earlier analysis by the DQ method have been overcome by a new approach in applying the boundary conditions. The accuracy and the efficiency of the newly developed method for solving nonlinear problems are demonstrated.展开更多
The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect ...The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.展开更多
A rotating axisymmetric circular nanoplate is modeled by the Mindlin plate theory.The Mindlin plate theory incorporates the nonlocal scale and strain gradient effects.The shear deformation of the circular nanoplate is...A rotating axisymmetric circular nanoplate is modeled by the Mindlin plate theory.The Mindlin plate theory incorporates the nonlocal scale and strain gradient effects.The shear deformation of the circular nanoplate is considered and the nonlocal strain gradient theory is utilized to derive the governing differential equation of motion that describes the out-of-plane free vibration behaviors of the nanoplate.The differential quadrature method is used to solve the governing equation numerically,and the natural frequencies of the out-of-plane vibration of rotating nanoplates are obtained accordingly.Two kinds of boundary conditions are commonly used in practical engineering,namely the fixed and simply supported constraints,and are considered in numerical examples.The variations of natural frequencies with respect to the thickness to radius ratio,the angular velocity,the nonlocal characteristic scale and the material characteristic scale are analyzed in detail.In particular,the critical angular velocity that measures whether the rotating circular nanoplate is stable or not is obtained numerically.The presented study has reference significance for the dynamic design and control of rotating circular nanostructures in current nano-technologies and nano-devices.展开更多
Semi-analytical elasticity solutions for bending of angle-ply laminates in cylindrical bending are presented using the state-space-based differential quadrature method (SSDQM). Partial differential state equation is d...Semi-analytical elasticity solutions for bending of angle-ply laminates in cylindrical bending are presented using the state-space-based differential quadrature method (SSDQM). Partial differential state equation is derived from the basic equations of elasticity based on the state space concept. Then, the differential quadrature (DQ) technique is introduced to discretize the longitu- dinal domain of the plate so that a series of ordinary differential state equations are obtained at the discrete points. Meanwhile, the edge constrained conditions are handled directly using the stress and displacement components without the Saint-Venant principle. The thickness domain is solved analytically based on the state space formalism along with the continuity conditions at interfaces. The present method is validated by comparing the results to the exact solutions of Pagano’s problem. Numerical results for fully clamped thick laminates are presented, and the influences of ply angle on stress distributions are discussed.展开更多
The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of the travel time were known explicitly by travelers. However, this distribution may be unavailab...The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of the travel time were known explicitly by travelers. However, this distribution may be unavailable in reality. By relaxing the restrictive assumption, a robust user equilibrium model based on cumulative prospect theory under distribution-free travel time was presented. In the absence of the cumulative distribution function of the travel time, the exact cumulative prospect value(CPV) for each route cannot be obtained. However, the upper and lower bounds on the CPV can be calculated by probability inequalities.Travelers were assumed to choose the routes with the best worst-case CPVs. The proposed model was formulated as a variational inequality problem and solved via a heuristic solution algorithm. A numerical example was also provided to illustrate the application of the proposed model and the efficiency of the solution algorithm.展开更多
The aim of this paper is to obtain numerical solutions of the one-dimensional,two-dimensional and coupled Burgers' equations through the generalized differential quadrature method(GDQM).The polynomial-based differ...The aim of this paper is to obtain numerical solutions of the one-dimensional,two-dimensional and coupled Burgers' equations through the generalized differential quadrature method(GDQM).The polynomial-based differential quadrature(PDQ) method is employed and the obtained system of ordinary differential equations is solved via the total variation diminishing Runge-Kutta(TVD-RK) method.The numerical solutions are satisfactorily coincident with the exact solutions.The method can compete against the methods applied in the literature.展开更多
Based on the new modified couple stress theory and considering the flexoelectric effect of the piezoelectric layers,the Euler Bernoulli nano-beam model of composite laminated materials driven by electrostatically fixe...Based on the new modified couple stress theory and considering the flexoelectric effect of the piezoelectric layers,the Euler Bernoulli nano-beam model of composite laminated materials driven by electrostatically fixed supports at both ends is established. The nonlinear differential governing equations and boundary conditions are derived by the Hamilton principle. The generalized differential quadrature method(GDQM) and the Newton Raphson method are used to numerically solve the differential governing equations. The influence of flexoelectric effect on the static and the dynamic pull-in characteristics of laminated nano-beams is analyzed. The results of the numerical calculation are in a good agreement with those in the literature when the model degenerated into a nanobeam model without flexoelectric effect. The stacking sequence,length scale parameter l and piezoelectric layer applied voltage V_(p) of the composite will affect the pull-in voltage,frequency and time-domain response of the structure. Given that the flexoelectric effect will reduce the pull-in voltage and dimensionless natural frequency of the structure,the maximum dimensionless displacement at the midpoint of the beam and the period of time-domain response should be increased.展开更多
The modified couple stress theory(MCST)is applied to analyze axisymmetric bending and buckling behaviors of circular microplates with sinusoidal shear deformation theory.The differential governing equations and bounda...The modified couple stress theory(MCST)is applied to analyze axisymmetric bending and buckling behaviors of circular microplates with sinusoidal shear deformation theory.The differential governing equations and boundary conditions are derived through the principle of minimum total potential energy,and expressed in nominal form with the introduced nominal variables.With the application of generalized differential quadrature method(GDQM),both the differential governing equations and boundary conditions are expressed in discrete form,and a set of linear equations are obtained.The bending deflection can be obtained through solving the linear equations,while buckling loads can be determined through solving general eigenvalue problems.The influence of material length scale parameter and plate geometrical dimensions on the bending deflection and buckling loads of circular microplates is investigated numerically for different boundary conditions.展开更多
Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrat...Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrature element method(QEM).Both of the derivatives and integrals in the variational description of a problem to be solved are directly evaluated by the aid of identical numerical interpolation points in the weak form QEM.The effectiveness of the presented numerical model is validated by comparing numerical results of the weak form QEM with those from FEM or analytic solution.It can be observed that only one quadrature element is fully competent for flexural and eigen-buckling analysis of a rectangular partially composite plate with shear connection stiffness commonly used.The numerical integration order of quadrature element can be adjusted neatly to meet the convergence requirement.The quadrature element model presented here is an effective and promising tool for further analysis of steel-concrete PCPs under more general circumstances.Parametric studies on the shear connection stiffness and length-width ratio of the plate are also presented.It is shown that the flexural deflections and the critical buckling loads of PCPs are significantly affected by the shear connection stiffness when its value is within a certain range.展开更多
This paper present an implementation of"modified cubic B-spline differential quadrature method (MCB-DQM)" proposed by Arora & Singh (Applied Mathematics and Computation Vol. 224(1) (2013) 161-177) for numer...This paper present an implementation of"modified cubic B-spline differential quadrature method (MCB-DQM)" proposed by Arora & Singh (Applied Mathematics and Computation Vol. 224(1) (2013) 161-177) for numerical computation of Fokker-Planck equations. The modified cubic B-splines are used as set of basis functions in the differential quadrature to compute the weighting coefficients for the spatial derivatives, which reduces Fokker-Planck equation into system of first-order ordinary differential equations (ODEs), in time. The well known SSP-RK43 scheme is then applied to solve the resulting system of ODEs. The efficiency of proposed method has been confirmed by three examples having their exact solutions. This shows that MCB-DQM results are capable of achieving high accuracy. Advantage of the scheme is that it can be applied very smoothly to solve the linear or nonlinear physical problems, and a very less storage space is required which causes less accumulation of numerical errors.展开更多
In this paper, the approximate solution to the linear fredholm-stieltjes integral equations of the second kind (LFSIESK) by using the generalized midpoint rule (GMR) is introduced. A comparison resu|ts depending ...In this paper, the approximate solution to the linear fredholm-stieltjes integral equations of the second kind (LFSIESK) by using the generalized midpoint rule (GMR) is introduced. A comparison resu|ts depending on the number of subintervals "n" are calculated by using Maple 18 and presented. These results are demonstrated graphically in a particular numerical example. An algorithm of this application is given by using Maple 18.展开更多
This paper investigated the nonlinear vibration of functionally graded beams containing an open edge crack based on Timoshenko beam theory.The cracked section is modeled by a massless elastic rotational spring.It is a...This paper investigated the nonlinear vibration of functionally graded beams containing an open edge crack based on Timoshenko beam theory.The cracked section is modeled by a massless elastic rotational spring.It is assumed that material properties follow exponential distributions through the beam thickness.The differential quadrature(DQ) method is employed to discretize the nonlinear governing equations which are then solved by a direct iterative method to obtain the nonlinear vibration frequencies of beams with different boundary conditions.The effects of the material gradient,crack depth and boundary conditions on nonlinear free vibration characteristics of the cracked FGM beams are studied in detail.展开更多
In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficie...In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence.展开更多
文摘New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bending stresses of circular plates with movable and immovable edges under uniform pressures or a central point load.The shortcomings existing in the earlier analysis by the DQ method have been overcome by a new approach in applying the boundary conditions. The accuracy and the efficiency of the newly developed method for solving nonlinear problems are demonstrated.
文摘The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.
基金supported by the Natural Science Foundation of China(No.11972240)the China Postdoctoral Science Foundation(No.2020M671574)the University Natural Science Research Project of Anhui Province(No.KJ2018A0481).
文摘A rotating axisymmetric circular nanoplate is modeled by the Mindlin plate theory.The Mindlin plate theory incorporates the nonlocal scale and strain gradient effects.The shear deformation of the circular nanoplate is considered and the nonlocal strain gradient theory is utilized to derive the governing differential equation of motion that describes the out-of-plane free vibration behaviors of the nanoplate.The differential quadrature method is used to solve the governing equation numerically,and the natural frequencies of the out-of-plane vibration of rotating nanoplates are obtained accordingly.Two kinds of boundary conditions are commonly used in practical engineering,namely the fixed and simply supported constraints,and are considered in numerical examples.The variations of natural frequencies with respect to the thickness to radius ratio,the angular velocity,the nonlocal characteristic scale and the material characteristic scale are analyzed in detail.In particular,the critical angular velocity that measures whether the rotating circular nanoplate is stable or not is obtained numerically.The presented study has reference significance for the dynamic design and control of rotating circular nanostructures in current nano-technologies and nano-devices.
基金Project supported by the National Natural Science Foundation of China (No. 10432030)the China Postdoctoral Science Foundation (No. 20060401071)the Program for New Century Excellent Talent in University of China (No. NCET-05-0510)
文摘Semi-analytical elasticity solutions for bending of angle-ply laminates in cylindrical bending are presented using the state-space-based differential quadrature method (SSDQM). Partial differential state equation is derived from the basic equations of elasticity based on the state space concept. Then, the differential quadrature (DQ) technique is introduced to discretize the longitu- dinal domain of the plate so that a series of ordinary differential state equations are obtained at the discrete points. Meanwhile, the edge constrained conditions are handled directly using the stress and displacement components without the Saint-Venant principle. The thickness domain is solved analytically based on the state space formalism along with the continuity conditions at interfaces. The present method is validated by comparing the results to the exact solutions of Pagano’s problem. Numerical results for fully clamped thick laminates are presented, and the influences of ply angle on stress distributions are discussed.
基金Project(2012CB725400)supported by the National Basic Research Program of ChinaProjects(71271023,71322102,7121001)supported by the National Natural Science Foundation of China
文摘The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of the travel time were known explicitly by travelers. However, this distribution may be unavailable in reality. By relaxing the restrictive assumption, a robust user equilibrium model based on cumulative prospect theory under distribution-free travel time was presented. In the absence of the cumulative distribution function of the travel time, the exact cumulative prospect value(CPV) for each route cannot be obtained. However, the upper and lower bounds on the CPV can be calculated by probability inequalities.Travelers were assumed to choose the routes with the best worst-case CPVs. The proposed model was formulated as a variational inequality problem and solved via a heuristic solution algorithm. A numerical example was also provided to illustrate the application of the proposed model and the efficiency of the solution algorithm.
文摘The aim of this paper is to obtain numerical solutions of the one-dimensional,two-dimensional and coupled Burgers' equations through the generalized differential quadrature method(GDQM).The polynomial-based differential quadrature(PDQ) method is employed and the obtained system of ordinary differential equations is solved via the total variation diminishing Runge-Kutta(TVD-RK) method.The numerical solutions are satisfactorily coincident with the exact solutions.The method can compete against the methods applied in the literature.
文摘Based on the new modified couple stress theory and considering the flexoelectric effect of the piezoelectric layers,the Euler Bernoulli nano-beam model of composite laminated materials driven by electrostatically fixed supports at both ends is established. The nonlinear differential governing equations and boundary conditions are derived by the Hamilton principle. The generalized differential quadrature method(GDQM) and the Newton Raphson method are used to numerically solve the differential governing equations. The influence of flexoelectric effect on the static and the dynamic pull-in characteristics of laminated nano-beams is analyzed. The results of the numerical calculation are in a good agreement with those in the literature when the model degenerated into a nanobeam model without flexoelectric effect. The stacking sequence,length scale parameter l and piezoelectric layer applied voltage V_(p) of the composite will affect the pull-in voltage,frequency and time-domain response of the structure. Given that the flexoelectric effect will reduce the pull-in voltage and dimensionless natural frequency of the structure,the maximum dimensionless displacement at the midpoint of the beam and the period of time-domain response should be increased.
基金supported in part by the National Natural Science Foundation of China(No.12172169)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘The modified couple stress theory(MCST)is applied to analyze axisymmetric bending and buckling behaviors of circular microplates with sinusoidal shear deformation theory.The differential governing equations and boundary conditions are derived through the principle of minimum total potential energy,and expressed in nominal form with the introduced nominal variables.With the application of generalized differential quadrature method(GDQM),both the differential governing equations and boundary conditions are expressed in discrete form,and a set of linear equations are obtained.The bending deflection can be obtained through solving the linear equations,while buckling loads can be determined through solving general eigenvalue problems.The influence of material length scale parameter and plate geometrical dimensions on the bending deflection and buckling loads of circular microplates is investigated numerically for different boundary conditions.
基金Project(51508562)supported by the National Natural Science Foundation of ChinaProject(ZK18-03-49)supported by the Scientific Research Program of National University of Defense Technology,China
文摘Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrature element method(QEM).Both of the derivatives and integrals in the variational description of a problem to be solved are directly evaluated by the aid of identical numerical interpolation points in the weak form QEM.The effectiveness of the presented numerical model is validated by comparing numerical results of the weak form QEM with those from FEM or analytic solution.It can be observed that only one quadrature element is fully competent for flexural and eigen-buckling analysis of a rectangular partially composite plate with shear connection stiffness commonly used.The numerical integration order of quadrature element can be adjusted neatly to meet the convergence requirement.The quadrature element model presented here is an effective and promising tool for further analysis of steel-concrete PCPs under more general circumstances.Parametric studies on the shear connection stiffness and length-width ratio of the plate are also presented.It is shown that the flexural deflections and the critical buckling loads of PCPs are significantly affected by the shear connection stiffness when its value is within a certain range.
文摘This paper present an implementation of"modified cubic B-spline differential quadrature method (MCB-DQM)" proposed by Arora & Singh (Applied Mathematics and Computation Vol. 224(1) (2013) 161-177) for numerical computation of Fokker-Planck equations. The modified cubic B-splines are used as set of basis functions in the differential quadrature to compute the weighting coefficients for the spatial derivatives, which reduces Fokker-Planck equation into system of first-order ordinary differential equations (ODEs), in time. The well known SSP-RK43 scheme is then applied to solve the resulting system of ODEs. The efficiency of proposed method has been confirmed by three examples having their exact solutions. This shows that MCB-DQM results are capable of achieving high accuracy. Advantage of the scheme is that it can be applied very smoothly to solve the linear or nonlinear physical problems, and a very less storage space is required which causes less accumulation of numerical errors.
文摘In this paper, the approximate solution to the linear fredholm-stieltjes integral equations of the second kind (LFSIESK) by using the generalized midpoint rule (GMR) is introduced. A comparison resu|ts depending on the number of subintervals "n" are calculated by using Maple 18 and presented. These results are demonstrated graphically in a particular numerical example. An algorithm of this application is given by using Maple 18.
基金supported by the National Natural Science Foundation of China (Grant No. 11002019)Ph.D. Programs Foundation of the Ministry of Education of China (Grant No. 20100009120018)the Fundamental Research Funds for the Central Universities (Grant No. 2009JBM073)
文摘This paper investigated the nonlinear vibration of functionally graded beams containing an open edge crack based on Timoshenko beam theory.The cracked section is modeled by a massless elastic rotational spring.It is assumed that material properties follow exponential distributions through the beam thickness.The differential quadrature(DQ) method is employed to discretize the nonlinear governing equations which are then solved by a direct iterative method to obtain the nonlinear vibration frequencies of beams with different boundary conditions.The effects of the material gradient,crack depth and boundary conditions on nonlinear free vibration characteristics of the cracked FGM beams are studied in detail.
基金supported by National Natural Science Foundation of China(Grant No.10901093)National Science Foundation of Shandong Province(Grant No.ZR2013AM006)
文摘In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence.