关于含参量积分顺序可交换的条件,一般教科书上都表述为: 定理1 若f(x,y)在R[a,b;c,d]上连续,则 integral from n=h to b(dx) integral from n=c to d f(x,y)dy=integral from n=c to d(dy) integral from n=h to bf(x,y)dx。 如所周知...关于含参量积分顺序可交换的条件,一般教科书上都表述为: 定理1 若f(x,y)在R[a,b;c,d]上连续,则 integral from n=h to b(dx) integral from n=c to d f(x,y)dy=integral from n=c to d(dy) integral from n=h to bf(x,y)dx。 如所周知,其中“f(x,y)在R[a,b;d]上连续”的条件是很强的,用它刻划积分顺序的可交换性甚不理想。展开更多
在微积分中,为解决含参量积分的求导与积分顺序可交换的问题,教科书上多采用下述定理1与定理2。 定理1 若函数f(x,y)与f_y(x,y)在R[a,b;c,d]上连续,则函数φ(y)=integral from n=a to b(f(x,y)dx)在[c,d]上可导,且 φ′(y)=integral fro...在微积分中,为解决含参量积分的求导与积分顺序可交换的问题,教科书上多采用下述定理1与定理2。 定理1 若函数f(x,y)与f_y(x,y)在R[a,b;c,d]上连续,则函数φ(y)=integral from n=a to b(f(x,y)dx)在[c,d]上可导,且 φ′(y)=integral from n=a to b(f_y(x,y)dx) (1)展开更多
The classical Hardy-Littlewood-Sobolev theorems for Riesz potentials (?Δ)?α/2 are extended to the generalised fractional integrals L –α/2 for 0 < α < n, where L=?div A? is a uniformly complex elliptic opera...The classical Hardy-Littlewood-Sobolev theorems for Riesz potentials (?Δ)?α/2 are extended to the generalised fractional integrals L –α/2 for 0 < α < n, where L=?div A? is a uniformly complex elliptic operator with bounded measurable coefficients in ?n.展开更多
文摘关于含参量积分顺序可交换的条件,一般教科书上都表述为: 定理1 若f(x,y)在R[a,b;c,d]上连续,则 integral from n=h to b(dx) integral from n=c to d f(x,y)dy=integral from n=c to d(dy) integral from n=h to bf(x,y)dx。 如所周知,其中“f(x,y)在R[a,b;d]上连续”的条件是很强的,用它刻划积分顺序的可交换性甚不理想。
文摘在微积分中,为解决含参量积分的求导与积分顺序可交换的问题,教科书上多采用下述定理1与定理2。 定理1 若函数f(x,y)与f_y(x,y)在R[a,b;c,d]上连续,则函数φ(y)=integral from n=a to b(f(x,y)dx)在[c,d]上可导,且 φ′(y)=integral from n=a to b(f_y(x,y)dx) (1)
基金This work was supported by the National Natural Science Foundation of China(Grant No.1017111) Foundation of Advanced Research Center,Zhongshan University.
文摘The classical Hardy-Littlewood-Sobolev theorems for Riesz potentials (?Δ)?α/2 are extended to the generalised fractional integrals L –α/2 for 0 < α < n, where L=?div A? is a uniformly complex elliptic operator with bounded measurable coefficients in ?n.