The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backsteppin...The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backstepping technology and dynamic surface control is formulated for the inverter in the grid-connected photovoltaic.The time-varying tuning functions are introduced into state-tracking errors to realize the predefined-time control effect.To address the“computational explosion problem”in the design process of backstepping control,dynamic surface control is adopted to avoid the analytical calculations of virtual control.The disturbances of the PV system are estimated and compensated by adaptive laws.The control parameters are chosen and the global stability of the closed-loop is ensured by Lyapunov conditions.Simulation results confirm the effectiveness of the proposed controller and ensure the predefined time control in the photovoltaic inverter.展开更多
Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of i...Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.展开更多
In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied sy...In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.展开更多
磁悬浮系统能使铁磁性物体悬浮在空中,可以应用于科研、医疗、娱乐、交通等多个领域。为了解决非线性、不稳定磁悬浮系统的控制问题,建立了磁悬浮时滞系统的数学模型,采用了Backstepping控制以及RBF神经网络和Backstepping控制结合的方...磁悬浮系统能使铁磁性物体悬浮在空中,可以应用于科研、医疗、娱乐、交通等多个领域。为了解决非线性、不稳定磁悬浮系统的控制问题,建立了磁悬浮时滞系统的数学模型,采用了Backstepping控制以及RBF神经网络和Backstepping控制结合的方法进行研究,采用李雅普诺夫稳定性理论分别设计非线性控制器,保证闭环系统的理论稳定。在此基础上,利用Radial basis function (RBF)神经网络的逼近特性,设计了自适应律,研究了对系统中未知函数的拟合。最后,通过MATLAB对两种控制方法的效果进行对比,仿真结果表明,两种方法均能使系统稳定,RBF神经网络与Backstepping控制结合的方法能较快实现稳定,效果更好,且RBF神经网络对未知函数的拟合效果也良好。展开更多
深度积分算法可将滑坡沿地表滑动的三维模型化简为二维模型进行求解,通过减少控制方程未知量的个数以提升求解效率。物质点法(material point method,MPM)具有无网格法和有网格法的双重优势,模拟滑坡大变形问题时可避免网格畸变现象。...深度积分算法可将滑坡沿地表滑动的三维模型化简为二维模型进行求解,通过减少控制方程未知量的个数以提升求解效率。物质点法(material point method,MPM)具有无网格法和有网格法的双重优势,模拟滑坡大变形问题时可避免网格畸变现象。采用深度积分耦合物质点法建立滑坡数值模型,给出算法实现具体流程,基于影响域改进的物质点法(influence domain material point method,IDMPM),针对两个典型无倾角底面光滑和有倾角底面不光滑滑坡算例进行基准测试。在计算精度方面,深度积分耦合物质点法模型能较好地预测远端距离、流速、深度等滑移特征参数;在计算效率方面,与常规物质点法求解格式相比,深度积分耦合物质点法模型可大幅度提高运行效率。该研究成果可为滑坡地质灾害破坏范围的分析预测、危害评估、应急抢险提供有效理论依据和时间保障。展开更多
基金supported by the State Grid Corporation of China Headquarters Science and Technology Project under Grant No.5400-202122573A-0-5-SF。
文摘The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backstepping technology and dynamic surface control is formulated for the inverter in the grid-connected photovoltaic.The time-varying tuning functions are introduced into state-tracking errors to realize the predefined-time control effect.To address the“computational explosion problem”in the design process of backstepping control,dynamic surface control is adopted to avoid the analytical calculations of virtual control.The disturbances of the PV system are estimated and compensated by adaptive laws.The control parameters are chosen and the global stability of the closed-loop is ensured by Lyapunov conditions.Simulation results confirm the effectiveness of the proposed controller and ensure the predefined time control in the photovoltaic inverter.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFF0708903)Ningbo Municipal Key Technology Research and Development Program of China(Grant No.2022Z006)Youth Fund of National Natural Science Foundation of China(Grant No.52205043)。
文摘Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.
基金supported in part by the National Key R&D Program of China under Grants 2021YFE0206100in part by the National Natural Science Foundation of China under Grant 62073321+2 种基金in part by National Defense Basic Scientific Research Program JCKY2019203C029in part by the Science and Technology Development Fund,Macao SAR under Grants FDCT-22-009-MISE,0060/2021/A2 and 0015/2020/AMJin part by the financial support from the National Defense Basic Scientific Research Project(JCKY2020130C025).
文摘In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.
文摘磁悬浮系统能使铁磁性物体悬浮在空中,可以应用于科研、医疗、娱乐、交通等多个领域。为了解决非线性、不稳定磁悬浮系统的控制问题,建立了磁悬浮时滞系统的数学模型,采用了Backstepping控制以及RBF神经网络和Backstepping控制结合的方法进行研究,采用李雅普诺夫稳定性理论分别设计非线性控制器,保证闭环系统的理论稳定。在此基础上,利用Radial basis function (RBF)神经网络的逼近特性,设计了自适应律,研究了对系统中未知函数的拟合。最后,通过MATLAB对两种控制方法的效果进行对比,仿真结果表明,两种方法均能使系统稳定,RBF神经网络与Backstepping控制结合的方法能较快实现稳定,效果更好,且RBF神经网络对未知函数的拟合效果也良好。
文摘深度积分算法可将滑坡沿地表滑动的三维模型化简为二维模型进行求解,通过减少控制方程未知量的个数以提升求解效率。物质点法(material point method,MPM)具有无网格法和有网格法的双重优势,模拟滑坡大变形问题时可避免网格畸变现象。采用深度积分耦合物质点法建立滑坡数值模型,给出算法实现具体流程,基于影响域改进的物质点法(influence domain material point method,IDMPM),针对两个典型无倾角底面光滑和有倾角底面不光滑滑坡算例进行基准测试。在计算精度方面,深度积分耦合物质点法模型能较好地预测远端距离、流速、深度等滑移特征参数;在计算效率方面,与常规物质点法求解格式相比,深度积分耦合物质点法模型可大幅度提高运行效率。该研究成果可为滑坡地质灾害破坏范围的分析预测、危害评估、应急抢险提供有效理论依据和时间保障。