3D spatial data model and simulating are the core of 3D GIS can be adopted indifferent domains. A data model based on Quasi Tri-Prism Volume (QTPV) has been proposed. QTPVdefinition and its special cases have been dis...3D spatial data model and simulating are the core of 3D GIS can be adopted indifferent domains. A data model based on Quasi Tri-Prism Volume (QTPV) has been proposed. QTPVdefinition and its special cases have been discussed. Using QTPV and its special cases, irregularnatural geological bodies and regular subsurface engineering can be described efficiently. Theproposed model is composed of five primitives and six objects. Data structures and topologicalrelationship of the fives primitives and three objects describing stratigraphy are designed indetail. Some schemes are designed for the QTPV modelling of stratigraphy and subsurface engineeringaccording to modelling data. The model manipulation method of QTPV cutting by an arbitrary plane isdiscussed. Using VC^(++)6. 0 programming language integrated with SQL database and OpenGL graphiclibrary under windows environment, a system prototype 3DGeoMV has been developed. The experimentresult shows that the QTPV model is feasible and efficient in modelling subsurface engineering.展开更多
Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with it...Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method,a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed.Firstly,aiming to the structural features of cubature Kalman filter,the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update.Secondly,the improved cubature Kalman filter is used as the model filter of interacting multiple model,and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step.In the simulations,compared with classic improved interacting multiple model algorithms,the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm.展开更多
A kind of hybrid reliability model is presented to solve the fatigue reliability problems of steel bridges. The cumulative damage model is one kind of the models used in fatigue reliability analysis. The parameter cha...A kind of hybrid reliability model is presented to solve the fatigue reliability problems of steel bridges. The cumulative damage model is one kind of the models used in fatigue reliability analysis. The parameter characteristics of the model can be described as probabilistic and interval. The two-stage hybrid reliability model is given with a theoretical foundation and a solving algorithm to solve the hybrid reliability problems. The theoretical foundation is established by the consistency relationships of interval reliability model and probability reliability model with normally distributed variables in theory. The solving process is combined with the definition of interval reliability index and the probabilistic algorithm. With the consideration of the parameter characteristics of the S-N curve, the cumulative damage model with hybrid variables is given based on the standards from different countries. Lastly, a case of steel structure in the Neville Island Bridge is analyzed to verify the applicability of the hybrid reliability model in fatigue reliability analysis based on the AASHTO.展开更多
The Ring effect refers to the filling in of Fraunhofer lines, which is mainly attributed to the rotational Raman scattering of solar spectra by N2 and O2 molecules in the atmosphere. The Ring effect is one of the most...The Ring effect refers to the filling in of Fraunhofer lines, which is mainly attributed to the rotational Raman scattering of solar spectra by N2 and O2 molecules in the atmosphere. The Ring effect is one of the most significant factors affecting the accuracy of retrieving concentrations of atmospheric trace gases, such as NO2 and SO2, from satellite observations through differential optical absorption spectroscopy. First in this study, the solar spectrum measured by the Ozone Monitoring Instrument onboard NASA Aura is convolved with the rotational Raman cross section of the atmosphere, which is calculated from the rotational Raman cross sections of N2 and O2 molecules, and divided by the original solar spectrum. The slowly varying term is removed by fitting it with a cubic polynomial to obtain the differential Ring spectrum. The results agree well with the calculations using a radiative transfer model (R2=0.9663). Second, the differential Ring spectrum is computed using two fixed wavelengths of 410 nm and 488 nm, and the resulting differential Ring spectra are similar to that calculated with varying wavelengths and agree well with the calculation using the radiative transfer model (R2=0.9624 and 0.9639 respectively). The computation time using the fixed wavelength is about 0.128% of that using a varying wavelength. Finally, we found that the frequency spectrum of the Raman cross sections for the atmosphere, N2 molecules and O2 molecules are similar; thus, the Raman cross section of N2 or O2 molecules can be used to compute the approximate Ring effect for simplicity.展开更多
基金Funded by the Hong Kong Polytechnic University ASD research fund (No. 1.34.A222),Open Research Fund Program of LIESMARS (No. WKL(01) 0302) and the National Natural Science Foundation of China(No. 40401021)
文摘3D spatial data model and simulating are the core of 3D GIS can be adopted indifferent domains. A data model based on Quasi Tri-Prism Volume (QTPV) has been proposed. QTPVdefinition and its special cases have been discussed. Using QTPV and its special cases, irregularnatural geological bodies and regular subsurface engineering can be described efficiently. Theproposed model is composed of five primitives and six objects. Data structures and topologicalrelationship of the fives primitives and three objects describing stratigraphy are designed indetail. Some schemes are designed for the QTPV modelling of stratigraphy and subsurface engineeringaccording to modelling data. The model manipulation method of QTPV cutting by an arbitrary plane isdiscussed. Using VC^(++)6. 0 programming language integrated with SQL database and OpenGL graphiclibrary under windows environment, a system prototype 3DGeoMV has been developed. The experimentresult shows that the QTPV model is feasible and efficient in modelling subsurface engineering.
基金Supported by the National Nature Science Foundations of China(No.61300214,U1204611,61170243)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(No.13IRTSTHN021)+3 种基金the Science and Technology Research Key Project of Education Department of Henan Province(No.13A413066)the Basic and Frontier Technology Research Plan of Henan Province(No.132300410148)the Funding Scheme of Young Key Teacher of Henan Province Universitiesthe Key Project of Teaching Reform Research of Henan University(No.HDXJJG2013-07)
文摘Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method,a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed.Firstly,aiming to the structural features of cubature Kalman filter,the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update.Secondly,the improved cubature Kalman filter is used as the model filter of interacting multiple model,and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step.In the simulations,compared with classic improved interacting multiple model algorithms,the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm.
基金Projects(51178042,51578047)supported by the National Natural Science Foundation of ChinaProject(C14JB00340)supported by the Innovative Research Fund in Beijing Jiaotong University,ChinaProject(2014-ZJKJ-03)supported by Science and Technology Research and Development Fund of the China Communications Construction Co.,LTD
文摘A kind of hybrid reliability model is presented to solve the fatigue reliability problems of steel bridges. The cumulative damage model is one kind of the models used in fatigue reliability analysis. The parameter characteristics of the model can be described as probabilistic and interval. The two-stage hybrid reliability model is given with a theoretical foundation and a solving algorithm to solve the hybrid reliability problems. The theoretical foundation is established by the consistency relationships of interval reliability model and probability reliability model with normally distributed variables in theory. The solving process is combined with the definition of interval reliability index and the probabilistic algorithm. With the consideration of the parameter characteristics of the S-N curve, the cumulative damage model with hybrid variables is given based on the standards from different countries. Lastly, a case of steel structure in the Neville Island Bridge is analyzed to verify the applicability of the hybrid reliability model in fatigue reliability analysis based on the AASHTO.
文摘The Ring effect refers to the filling in of Fraunhofer lines, which is mainly attributed to the rotational Raman scattering of solar spectra by N2 and O2 molecules in the atmosphere. The Ring effect is one of the most significant factors affecting the accuracy of retrieving concentrations of atmospheric trace gases, such as NO2 and SO2, from satellite observations through differential optical absorption spectroscopy. First in this study, the solar spectrum measured by the Ozone Monitoring Instrument onboard NASA Aura is convolved with the rotational Raman cross section of the atmosphere, which is calculated from the rotational Raman cross sections of N2 and O2 molecules, and divided by the original solar spectrum. The slowly varying term is removed by fitting it with a cubic polynomial to obtain the differential Ring spectrum. The results agree well with the calculations using a radiative transfer model (R2=0.9663). Second, the differential Ring spectrum is computed using two fixed wavelengths of 410 nm and 488 nm, and the resulting differential Ring spectra are similar to that calculated with varying wavelengths and agree well with the calculation using the radiative transfer model (R2=0.9624 and 0.9639 respectively). The computation time using the fixed wavelength is about 0.128% of that using a varying wavelength. Finally, we found that the frequency spectrum of the Raman cross sections for the atmosphere, N2 molecules and O2 molecules are similar; thus, the Raman cross section of N2 or O2 molecules can be used to compute the approximate Ring effect for simplicity.