Tidally induced resuspension processes play an important role in the release of mercury (Hg) into the water column, which increases the risk of Hg exposure to estuarine eco-systems. In order to further understand the ...Tidally induced resuspension processes play an important role in the release of mercury (Hg) into the water column, which increases the risk of Hg exposure to estuarine eco-systems. In order to further understand the geochemical activities of Hg in the intertidal area, the temporal variations of dissolved Hg (Hg D ) and particulate Hg (Hg P ) in the water column during the course of a tidal cycle and its geochemical processes were studied in the southern intertidal zone of the Yangtze Estuary, China. The concentrations of Hg D and Hg P varied between 37-612 ng/L and 51-638 ng/L respectively during the tidal cycle. The increase of Hg D was distinguished at the early flood tide and late ebb tide when the water flow rates were higher. The Hg D concentrations were negatively correlated with Hg P (r = 0.523, p < 0.05) and positively correlated with dissolved organic carbon (DOC) (r = 0.605, p < 0.05) in the bottom water, indicating that the Hg D released from the sediments into the overlying water was associated with the simultaneously released colloidal material in the bottom water. The main pathways for the translocation of Hg from the sediments to the overlying water include the processes of desorption from resuspended particles, advection or diffusion from sediments, and the oxidation of resuspended sulfide. The results of principal components analysis (PCA) and Pearson correlation analysis showed that the combined effects of the total suspended substrate (TSS), DOC, pH and dissolved oxygen (DO) influenced the geochemical activities of Hg in the water column during the course of a tidal cycle.展开更多
基金supported by the National Natural Science Foundation of China (40701164, 40971259)the National Key Water Special Project of China (2009ZX07317-006)the Program of Shanghai Subject Chief Scientist (10XD1401600)
文摘Tidally induced resuspension processes play an important role in the release of mercury (Hg) into the water column, which increases the risk of Hg exposure to estuarine eco-systems. In order to further understand the geochemical activities of Hg in the intertidal area, the temporal variations of dissolved Hg (Hg D ) and particulate Hg (Hg P ) in the water column during the course of a tidal cycle and its geochemical processes were studied in the southern intertidal zone of the Yangtze Estuary, China. The concentrations of Hg D and Hg P varied between 37-612 ng/L and 51-638 ng/L respectively during the tidal cycle. The increase of Hg D was distinguished at the early flood tide and late ebb tide when the water flow rates were higher. The Hg D concentrations were negatively correlated with Hg P (r = 0.523, p < 0.05) and positively correlated with dissolved organic carbon (DOC) (r = 0.605, p < 0.05) in the bottom water, indicating that the Hg D released from the sediments into the overlying water was associated with the simultaneously released colloidal material in the bottom water. The main pathways for the translocation of Hg from the sediments to the overlying water include the processes of desorption from resuspended particles, advection or diffusion from sediments, and the oxidation of resuspended sulfide. The results of principal components analysis (PCA) and Pearson correlation analysis showed that the combined effects of the total suspended substrate (TSS), DOC, pH and dissolved oxygen (DO) influenced the geochemical activities of Hg in the water column during the course of a tidal cycle.