Many factors can affect the sediment deposition and soil erosion process in riparian zone, including terrain, sediment transport and water level fluctuations. Clarifying the factors influencing sediment deposition pro...Many factors can affect the sediment deposition and soil erosion process in riparian zone, including terrain, sediment transport and water level fluctuations. Clarifying the factors influencing sediment deposition process in the riparian zone of the Three Gorges Reservoirs is an important problem to determine the key area of sediment deposition and its trend of development in the study area. In order to reveal the influence of these environmental factors on the sediment deposition in riparian zone of the Three Gorges Reservoir, this study investigated 1) the amount of deposited sediment in different environmental conditions, 2) the potential factors affecting sediment deposition in riparian zone of the Three Gorges Reservoir, 3) the relationship between the deposited sediment amount and these factors previously mentioned using correlation analysis, and 4) the influence of human activities considered as an additional factor. This study found that 1) slope gradient, elevation, inundating duration and human activities were the main factors influencing sedimentation in riparian zone of the Three Gorges Reservoir, and 2) the impact of each factor varied with spaces. Specifically, in the upper reach from Jiangjin to Fuling, human activities such as gravel dredging, bank revetment and ports and wharfs constructing disturbed considerable amounts of deposited sediment, as a result, there was no natural law to dictate the distribution. In the middle reach from Fuling to Fengjie, slope gradient and inundating duration were the controlling factors, and the sediment deposition amount was greater in the areas with a gentler slope or lower elevation. Water flow on gentler slopes generally had lower velocity, resulting in more sediment to deposit. Sites with lower elevations would be drowned by sediment-laden flow with a longer duration resulting from hydrologic regime controlled by the operating strategy of the Three Gorges Reservoir, leading to a larger amount of sediment deposition. In the lower reach from Fengjie to Zigni, slope gradient was similar to the middle reach, performing a primary factor, while other factors showed little relationship with sediment amount.展开更多
In this paper, silt sediment is considered to be Bingham body, which is made up of coarse and fine particles in front of a hydraulic gate. The coarse and fine particles provide friction and shear stress in the course ...In this paper, silt sediment is considered to be Bingham body, which is made up of coarse and fine particles in front of a hydraulic gate. The coarse and fine particles provide friction and shear stress in the course of opening the gate. They constitute together the adhesion force of the sediment. Based on this viewpoint, this paper puts forward a formula for the effect of silt sediment on the lifting force. The formula includes gate weight, down-suction force, sealing rubber friction, plus-weight, water-column pressure, plus-silted-sediment weight and rolling(or sliding)-bearing friction. Finally, the verification results show that the formula has certain reliability and the calculation accuracy can meet the need of practical engineering.展开更多
Sediment cores (-40-100 cm) were collected at 12 locations in the western Bohai Bay, the Haihe River estuary, the Yongding River estuary and the Tianjin Harbor, China, during 24-26 July 2007, and analyzed for ^7Be a...Sediment cores (-40-100 cm) were collected at 12 locations in the western Bohai Bay, the Haihe River estuary, the Yongding River estuary and the Tianjin Harbor, China, during 24-26 July 2007, and analyzed for ^7Be and ^210pb activities. Due to localized hydrodynamic patterns and frequent disturbance from dredging activities, steady-state sedimentation features were not observed in this study. As demonstrated in the VBe and ^210pb profiles, the temporal and spatial variations of these radionuclides support a non-steady state depositional environment in the study area. By comparing ^7Be and ^210pb inventories in the sediments with those of the atmospheric source, we found that: 1) sediments dredged from the Tianjin Harbor or eroded from nearby estuarine and coastal areas are retained in the western Bohai Bay for relatively short intervals (several months), as reflected in the relatively high ^7Be inventories in the western Bohai Bay; 2) over the long-term (years to decades), ^210Pb inventories in the sediments imply that there is a net on-shore transport of sediments, and the sediments are mass-balanced in the entire study area. Overall, our results suggest that the sediments are retained in the estuaries and the western Bohai Bay despite local variability in sediment dynamics and disturbance due to human activities.展开更多
The extra sediment load induced by typhoons and rainstorms in the Heshe River, Taiwan, are the principal reason for severe sediment-related disasters. The total sediment load during Typhoon Morakot in 9009 was 31 x lo...The extra sediment load induced by typhoons and rainstorms in the Heshe River, Taiwan, are the principal reason for severe sediment-related disasters. The total sediment load during Typhoon Morakot in 9009 was 31 x lo6 m3, accounting for 95% of the annual sediment discharge. Large amounts of sediment load entered the Hoshe River, causing the braiding index (BI) to increase. Subsequently, the BI became positively correlated with the channel width in the Hoshe River. The specific typhoon and rainstorm events decreased after Typhoon Morakot, the sediment input decreased, inducing the fluvial morphology of the braided river to develop into a meandering river. The extra sediment load induced the deposition depth to increase and produce a headward deposition in the main channel and its tributaries. In addition, the river bend and the topographical notch restrained the sediment from moving downstream and being stored locally, indirectly increasing the erosion density of the river banks from 2.5 to lo.5 times.展开更多
Non-homogeneous two-phase debris flows are widely found in the western mountainous regions of China. To investigate the characteristics of the debris flow deposition process related to the morphology and extent of the...Non-homogeneous two-phase debris flows are widely found in the western mountainous regions of China. To investigate the characteristics of the debris flow deposition process related to the morphology and extent of the debris fan, a series of physical experiments were carried out using an experimental flume. Some useful relationships were obtained to link the flow velocity with the geometric characteristics of deposition morphology and the corresponding area or volume. Based on these, some expressions about energy dissipation process in both the transport-deposition zone and deposition zone are presented, and improved equations describing solidliquid two-phase energy transformations in the specific deposition zone are also established. These results provide a basis for further investigating the underlying mechanisms of non-homogeneous debris flows, based upon which effective disaster control measures can be undertaken.展开更多
基金funded by the Chinese Academy of Sciences(Grant Nos.KFJ-EW-STS-008,KFJSW-STS-175)
文摘Many factors can affect the sediment deposition and soil erosion process in riparian zone, including terrain, sediment transport and water level fluctuations. Clarifying the factors influencing sediment deposition process in the riparian zone of the Three Gorges Reservoirs is an important problem to determine the key area of sediment deposition and its trend of development in the study area. In order to reveal the influence of these environmental factors on the sediment deposition in riparian zone of the Three Gorges Reservoir, this study investigated 1) the amount of deposited sediment in different environmental conditions, 2) the potential factors affecting sediment deposition in riparian zone of the Three Gorges Reservoir, 3) the relationship between the deposited sediment amount and these factors previously mentioned using correlation analysis, and 4) the influence of human activities considered as an additional factor. This study found that 1) slope gradient, elevation, inundating duration and human activities were the main factors influencing sedimentation in riparian zone of the Three Gorges Reservoir, and 2) the impact of each factor varied with spaces. Specifically, in the upper reach from Jiangjin to Fuling, human activities such as gravel dredging, bank revetment and ports and wharfs constructing disturbed considerable amounts of deposited sediment, as a result, there was no natural law to dictate the distribution. In the middle reach from Fuling to Fengjie, slope gradient and inundating duration were the controlling factors, and the sediment deposition amount was greater in the areas with a gentler slope or lower elevation. Water flow on gentler slopes generally had lower velocity, resulting in more sediment to deposit. Sites with lower elevations would be drowned by sediment-laden flow with a longer duration resulting from hydrologic regime controlled by the operating strategy of the Three Gorges Reservoir, leading to a larger amount of sediment deposition. In the lower reach from Fengjie to Zigni, slope gradient was similar to the middle reach, performing a primary factor, while other factors showed little relationship with sediment amount.
基金Supported by Shandong Province Outstanding Young Scientist Award Fund(No.BS2014SF016)the National Natural Science Foundation of China(No.50979067)+1 种基金Ludong University Doctor Introduction Foundation(No.LY2014026 and No.LY2014028)the Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science(No.2012B104)
文摘In this paper, silt sediment is considered to be Bingham body, which is made up of coarse and fine particles in front of a hydraulic gate. The coarse and fine particles provide friction and shear stress in the course of opening the gate. They constitute together the adhesion force of the sediment. Based on this viewpoint, this paper puts forward a formula for the effect of silt sediment on the lifting force. The formula includes gate weight, down-suction force, sealing rubber friction, plus-weight, water-column pressure, plus-silted-sediment weight and rolling(or sliding)-bearing friction. Finally, the verification results show that the formula has certain reliability and the calculation accuracy can meet the need of practical engineering.
基金Supported by the New Jersey Sea Grant (No. 6560-0000, H. Feng)the Tianjin Science and Technology Committee (No. 06YFGHHZ01500)
文摘Sediment cores (-40-100 cm) were collected at 12 locations in the western Bohai Bay, the Haihe River estuary, the Yongding River estuary and the Tianjin Harbor, China, during 24-26 July 2007, and analyzed for ^7Be and ^210pb activities. Due to localized hydrodynamic patterns and frequent disturbance from dredging activities, steady-state sedimentation features were not observed in this study. As demonstrated in the VBe and ^210pb profiles, the temporal and spatial variations of these radionuclides support a non-steady state depositional environment in the study area. By comparing ^7Be and ^210pb inventories in the sediments with those of the atmospheric source, we found that: 1) sediments dredged from the Tianjin Harbor or eroded from nearby estuarine and coastal areas are retained in the western Bohai Bay for relatively short intervals (several months), as reflected in the relatively high ^7Be inventories in the western Bohai Bay; 2) over the long-term (years to decades), ^210Pb inventories in the sediments imply that there is a net on-shore transport of sediments, and the sediments are mass-balanced in the entire study area. Overall, our results suggest that the sediments are retained in the estuaries and the western Bohai Bay despite local variability in sediment dynamics and disturbance due to human activities.
文摘The extra sediment load induced by typhoons and rainstorms in the Heshe River, Taiwan, are the principal reason for severe sediment-related disasters. The total sediment load during Typhoon Morakot in 9009 was 31 x lo6 m3, accounting for 95% of the annual sediment discharge. Large amounts of sediment load entered the Hoshe River, causing the braiding index (BI) to increase. Subsequently, the BI became positively correlated with the channel width in the Hoshe River. The specific typhoon and rainstorm events decreased after Typhoon Morakot, the sediment input decreased, inducing the fluvial morphology of the braided river to develop into a meandering river. The extra sediment load induced the deposition depth to increase and produce a headward deposition in the main channel and its tributaries. In addition, the river bend and the topographical notch restrained the sediment from moving downstream and being stored locally, indirectly increasing the erosion density of the river banks from 2.5 to lo.5 times.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11372048, 10972042)National Basic Research Program of China (2011CB403304)+2 种基金Open Fund of Chengdu University of Technology (SKLGP2012K027)Open Fund of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (SKHL1409)Open Foundation of the Institute of Mountain Hazards and Environment
文摘Non-homogeneous two-phase debris flows are widely found in the western mountainous regions of China. To investigate the characteristics of the debris flow deposition process related to the morphology and extent of the debris fan, a series of physical experiments were carried out using an experimental flume. Some useful relationships were obtained to link the flow velocity with the geometric characteristics of deposition morphology and the corresponding area or volume. Based on these, some expressions about energy dissipation process in both the transport-deposition zone and deposition zone are presented, and improved equations describing solidliquid two-phase energy transformations in the specific deposition zone are also established. These results provide a basis for further investigating the underlying mechanisms of non-homogeneous debris flows, based upon which effective disaster control measures can be undertaken.