A numerical simulation was performed to investigate the interaction of two bubbles rising side by side in shear-thinning fluid using volume of fluid (VOF) method coupled with continuous surface force (CSF) method....A numerical simulation was performed to investigate the interaction of two bubbles rising side by side in shear-thinning fluid using volume of fluid (VOF) method coupled with continuous surface force (CSF) method. By considering rheological characteristics of fluid, this approach was able to accurately capture the deformation of bubble interface, and validated by comparing with the experimental results. The rising of bubble pairs with different configurations, including horizontal alignment and oblique alignment, was simulated by the method. The influences of the bubble initial distance and the bubble alignment were studied by analyzing the bubble deformation, rising paths and flow fields surrounding bubbles. The results indicate that within certam mltlal bubble spacing of S = 3.3 (S* = SI/D, SI initial distance between bubbles, and D bubble diameter), the dynamic interaction between two bub- bles aligned horizontally shows repulsive effect that decreases with the increase of initial bubble spacing, but weakens to certain degree by the shear-thinning properties of fluid. However, the interaction between two bubbles aligned obliquely presents a repulsive effect for the small angle involved but an attractive impact for the large one, which is vet strengthened by the rheological characteristics of fluid.展开更多
abstract The volumetric mass transfer coefficient kLa of gases (H2, CO, CO2) and mass transfer coefficient kL on liquid par-affin side were studied using the dynamic absorption method in slurry bubble column reactor...abstract The volumetric mass transfer coefficient kLa of gases (H2, CO, CO2) and mass transfer coefficient kL on liquid par-affin side were studied using the dynamic absorption method in slurry bubble column reactors under elevated temperature and elevated pressure. Meanwhile, gas-holdup and gas-liquid interfacial area a were obtained. The effects of temperature, pressure, superficial gas velocity and solid concentration on the mass transfer coeffi-cient were discussed. Experimental results show that the gas-liquid volumetric mass transfer coefficient kLa and interfacial area a increased with the increase of pressure, temperature, and superficial gas velocity, and decreased with the slurry concentration. The mass transfer coefficient kL increased with increasing superficial gas velocity and temperature and decreased with higher slurry concentration, while it changed slightly with pressure. Ac-cording to analysis of experimental data, an empirical correlation is obtained to calculate the values of kLa for H2 (CO, CO2) in the gas-paraffin-quartz system in a bubble column under elevated temperature and elevated pressure.展开更多
基金Supported by the National Natural Science Foundation of China (21076139, 21106106), Tianjin Natural Science Foundation of China (12JcQNJC3700), and Foundation of Tianjin Educational Committee of China (20100508).
文摘A numerical simulation was performed to investigate the interaction of two bubbles rising side by side in shear-thinning fluid using volume of fluid (VOF) method coupled with continuous surface force (CSF) method. By considering rheological characteristics of fluid, this approach was able to accurately capture the deformation of bubble interface, and validated by comparing with the experimental results. The rising of bubble pairs with different configurations, including horizontal alignment and oblique alignment, was simulated by the method. The influences of the bubble initial distance and the bubble alignment were studied by analyzing the bubble deformation, rising paths and flow fields surrounding bubbles. The results indicate that within certam mltlal bubble spacing of S = 3.3 (S* = SI/D, SI initial distance between bubbles, and D bubble diameter), the dynamic interaction between two bub- bles aligned horizontally shows repulsive effect that decreases with the increase of initial bubble spacing, but weakens to certain degree by the shear-thinning properties of fluid. However, the interaction between two bubbles aligned obliquely presents a repulsive effect for the small angle involved but an attractive impact for the large one, which is vet strengthened by the rheological characteristics of fluid.
基金Supported by the National Natural Science Foundation of China(20776018)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD20130325)
文摘abstract The volumetric mass transfer coefficient kLa of gases (H2, CO, CO2) and mass transfer coefficient kL on liquid par-affin side were studied using the dynamic absorption method in slurry bubble column reactors under elevated temperature and elevated pressure. Meanwhile, gas-holdup and gas-liquid interfacial area a were obtained. The effects of temperature, pressure, superficial gas velocity and solid concentration on the mass transfer coeffi-cient were discussed. Experimental results show that the gas-liquid volumetric mass transfer coefficient kLa and interfacial area a increased with the increase of pressure, temperature, and superficial gas velocity, and decreased with the slurry concentration. The mass transfer coefficient kL increased with increasing superficial gas velocity and temperature and decreased with higher slurry concentration, while it changed slightly with pressure. Ac-cording to analysis of experimental data, an empirical correlation is obtained to calculate the values of kLa for H2 (CO, CO2) in the gas-paraffin-quartz system in a bubble column under elevated temperature and elevated pressure.