Soil test crop response (STCR) correlation studies were carried out in Vindhyan alluvial plain during 2001 to 2004 taking IR-36 as test crop to quantify rice production in the context of the variability of soil prop...Soil test crop response (STCR) correlation studies were carried out in Vindhyan alluvial plain during 2001 to 2004 taking IR-36 as test crop to quantify rice production in the context of the variability of soil properties and use of balanced fertilizers based on targeted yield concept. The soils were developed on gently sloping alluvial plain with different physiographic settings and notable variation in drainage condition. Soil properties show moderate variation in texture (loamy to clay), organic carbon content (4.4 to 9.8 g/kg), cation exchange capacity (10,2 to 22.4 cmol (p+)/kg) and pH (5.3 to 6,4), Soil fertility status for N is low to medium (224 to 348 kg/ha), P is medium to high (87 to 320 kg/ha) and K ranges from medium to high (158 to 678 kg/ha). Database regarding nutrient requirement in kg/t of grain produce (NR), the percent contribution from the soil available nutrients [CS (%)] and the percent contribution from the applied fertilizer nutrients [CF (%)] were computed for calibrating and fbrmulating fertilizer recommendations. Validity of the yield target for 7 and 8 t/ha was tested in farmers' fields and yields targets varied at less than 10%. The percent achievement of targets aimed at different level was more than 90%, indicating soil test based fertilizer recommendation approach was economically viable within the agro-ecological zone with relatively uniform cropping practices and socio-economic conditions.展开更多
Soil erosion/sedimentation is an immense problem threatening the live storage capacity of dam reservoirs in Ethiopia. This in turn reduces the power generation capacities of hydropower reservoirs. Therefore, studies w...Soil erosion/sedimentation is an immense problem threatening the live storage capacity of dam reservoirs in Ethiopia. This in turn reduces the power generation capacities of hydropower reservoirs. Therefore, studies which give insight into soil erosion/sedimentation mechanisms and mitigation methods is important. The high rate of soil erosion/sedimentation threats the lifespan of Gilgel Gibe-I hydropower reservoir, The problem of sedimentation in Gilgel Gibe-I will also affect Gilgel Gibe-2 which uses the water released from Gilgel Gibe-1. The sustainability of these hydropower plants needs catchment management practices that will reduce soil erosion. This paper presents the results of monthly and yearly sediment yield simulations experiments conducted for Gilgel Gibe-1 under different BMP (best management practice) scenarios. The scenarios applied in this paper are: (1) maintaining existing conditions; (2) introducing filter strips; (3) applying stone/soil bunds; (4) reforestation. The SWAT (soil and water assessment tool) was used to model soil erosion, identify soil erosion prone areas and assess the impact of BMPs on sediment reduction via simulations. The simulation results showed that applying filter strips, stone bunds and reforestation scenarios could reduce the current sediment yields at soil erosion prone areas and at the outlet of the catchment area which is the inlet to Gilgel Gibe-I reservoir.展开更多
基金Project supported by the Indian Council of Agricultural Research, and the National Agricultural Technology Program, India
文摘Soil test crop response (STCR) correlation studies were carried out in Vindhyan alluvial plain during 2001 to 2004 taking IR-36 as test crop to quantify rice production in the context of the variability of soil properties and use of balanced fertilizers based on targeted yield concept. The soils were developed on gently sloping alluvial plain with different physiographic settings and notable variation in drainage condition. Soil properties show moderate variation in texture (loamy to clay), organic carbon content (4.4 to 9.8 g/kg), cation exchange capacity (10,2 to 22.4 cmol (p+)/kg) and pH (5.3 to 6,4), Soil fertility status for N is low to medium (224 to 348 kg/ha), P is medium to high (87 to 320 kg/ha) and K ranges from medium to high (158 to 678 kg/ha). Database regarding nutrient requirement in kg/t of grain produce (NR), the percent contribution from the soil available nutrients [CS (%)] and the percent contribution from the applied fertilizer nutrients [CF (%)] were computed for calibrating and fbrmulating fertilizer recommendations. Validity of the yield target for 7 and 8 t/ha was tested in farmers' fields and yields targets varied at less than 10%. The percent achievement of targets aimed at different level was more than 90%, indicating soil test based fertilizer recommendation approach was economically viable within the agro-ecological zone with relatively uniform cropping practices and socio-economic conditions.
文摘Soil erosion/sedimentation is an immense problem threatening the live storage capacity of dam reservoirs in Ethiopia. This in turn reduces the power generation capacities of hydropower reservoirs. Therefore, studies which give insight into soil erosion/sedimentation mechanisms and mitigation methods is important. The high rate of soil erosion/sedimentation threats the lifespan of Gilgel Gibe-I hydropower reservoir, The problem of sedimentation in Gilgel Gibe-I will also affect Gilgel Gibe-2 which uses the water released from Gilgel Gibe-1. The sustainability of these hydropower plants needs catchment management practices that will reduce soil erosion. This paper presents the results of monthly and yearly sediment yield simulations experiments conducted for Gilgel Gibe-1 under different BMP (best management practice) scenarios. The scenarios applied in this paper are: (1) maintaining existing conditions; (2) introducing filter strips; (3) applying stone/soil bunds; (4) reforestation. The SWAT (soil and water assessment tool) was used to model soil erosion, identify soil erosion prone areas and assess the impact of BMPs on sediment reduction via simulations. The simulation results showed that applying filter strips, stone bunds and reforestation scenarios could reduce the current sediment yields at soil erosion prone areas and at the outlet of the catchment area which is the inlet to Gilgel Gibe-I reservoir.