As have been determined, the ratios of oxides and the contents of CaCO3 show a tendency to increase from bottom to top in Luochuan loess section, whereas an opposite tendency is observed for the relative values of wea...As have been determined, the ratios of oxides and the contents of CaCO3 show a tendency to increase from bottom to top in Luochuan loess section, whereas an opposite tendency is observed for the relative values of weathering leaching or accumulation of loess, Moreover, the limits of oxide ratios from less to greater than the average value coincide with the boundary between Wucheng and Lishi loess strata, as well as with the boundary of magnetic polarity reversal. The ratios of oxides and the variations of relative weathering-leaching or accumulation extents are synchronous with the fluctuation of CaCO3 contents. From this investigation, it is shown that the ratios of oxides in the superimposed loees and paleosols from the loess profile are found rhythmically varied. These Characteristics might be explained by the hypothesis of repeated climatic fluctuation from dry (loess) to humid (paleosol) during the Quaternary period.展开更多
Correspondence analysis and fuzzy C-means cluster methods were used to divide the stratigraphy of heavy mineral assemblages, and the sediment sources and depositional dynamics of the environment reconstructed. The ass...Correspondence analysis and fuzzy C-means cluster methods were used to divide the stratigraphy of heavy mineral assemblages, and the sediment sources and depositional dynamics of the environment reconstructed. The assemblages were taken from marine sediments from the late Pleistocene to the Holocene in Core Q43 situated on the outer shelf of the East China Sea. Based on the variable boundaries of the mineral assemblage at 63 and 228 cmbsf (cm below sea floor), the core might have previously been divided into three sediment strata marked with units Ⅰ, Ⅱ and Ⅲ, which would be consistent with the divided sediment stratum of the core using minor element geochemistry. The downcore distribution of heavy minerals divided the sedimentary sequence into three major units, which were further subdivided into four subunits. The interval between 0 and 63 cmbsf of the core (unit Ⅰ), which spans the Holocene and the uppermost late Pleistocene, is characterized by a hornblende-epidote-pyroxene assemblage, and contains relatively a smaller amount of schistic mineral and authigenic pyrite. In comparison, the interval between 63 and 228 cmbsf (unit Ⅱ), is representative of the Last Glacial Maximum (LGM), and features a hornblende-epidote-magnetite-ilmenite assemblage containing the highest concentrations of heavy minerals and opaque minerals. However, the interval between 228 and 309 cmbsf (unit Ⅲ), which spans the subinterglacial period, is characterized by a hornblende-authigenic-pyrite-mica assemblage. Relative ratios of some heavy minerals can be used as tracers of clastic sediment sources. The lower part of the sediment core shows the highest magnetite/ilmenite ratio and relatively high hornblende/augite and hornblende/epidote ratios. The middle core shows the highest hornblende/augite and hornblende/epidote ratios, and the lowest magnetite/ilmenite ratio. The upper part exhibits a slightly higher magnetite/ilmenite ratio, and also the lowest hornblende/augite and hornblende/epidote ratios. The distribution of the mineral ratio is consistent with stratigraphic division in heavy mineral data using correspondence analysis and fuzzy C-means clustering. Variations in heavy mineral association and mineral ratio in core Q43 revealed changes in provenance and depositional environment of the southern outer shelf of the East China Sea since the late Pleistocene, well corresponding to interglacial and glacial cycles.展开更多
文摘As have been determined, the ratios of oxides and the contents of CaCO3 show a tendency to increase from bottom to top in Luochuan loess section, whereas an opposite tendency is observed for the relative values of weathering leaching or accumulation of loess, Moreover, the limits of oxide ratios from less to greater than the average value coincide with the boundary between Wucheng and Lishi loess strata, as well as with the boundary of magnetic polarity reversal. The ratios of oxides and the variations of relative weathering-leaching or accumulation extents are synchronous with the fluctuation of CaCO3 contents. From this investigation, it is shown that the ratios of oxides in the superimposed loees and paleosols from the loess profile are found rhythmically varied. These Characteristics might be explained by the hypothesis of repeated climatic fluctuation from dry (loess) to humid (paleosol) during the Quaternary period.
基金Supported by the National Natural Science Foundation of China (Nos. 40176014,40067013)
文摘Correspondence analysis and fuzzy C-means cluster methods were used to divide the stratigraphy of heavy mineral assemblages, and the sediment sources and depositional dynamics of the environment reconstructed. The assemblages were taken from marine sediments from the late Pleistocene to the Holocene in Core Q43 situated on the outer shelf of the East China Sea. Based on the variable boundaries of the mineral assemblage at 63 and 228 cmbsf (cm below sea floor), the core might have previously been divided into three sediment strata marked with units Ⅰ, Ⅱ and Ⅲ, which would be consistent with the divided sediment stratum of the core using minor element geochemistry. The downcore distribution of heavy minerals divided the sedimentary sequence into three major units, which were further subdivided into four subunits. The interval between 0 and 63 cmbsf of the core (unit Ⅰ), which spans the Holocene and the uppermost late Pleistocene, is characterized by a hornblende-epidote-pyroxene assemblage, and contains relatively a smaller amount of schistic mineral and authigenic pyrite. In comparison, the interval between 63 and 228 cmbsf (unit Ⅱ), is representative of the Last Glacial Maximum (LGM), and features a hornblende-epidote-magnetite-ilmenite assemblage containing the highest concentrations of heavy minerals and opaque minerals. However, the interval between 228 and 309 cmbsf (unit Ⅲ), which spans the subinterglacial period, is characterized by a hornblende-authigenic-pyrite-mica assemblage. Relative ratios of some heavy minerals can be used as tracers of clastic sediment sources. The lower part of the sediment core shows the highest magnetite/ilmenite ratio and relatively high hornblende/augite and hornblende/epidote ratios. The middle core shows the highest hornblende/augite and hornblende/epidote ratios, and the lowest magnetite/ilmenite ratio. The upper part exhibits a slightly higher magnetite/ilmenite ratio, and also the lowest hornblende/augite and hornblende/epidote ratios. The distribution of the mineral ratio is consistent with stratigraphic division in heavy mineral data using correspondence analysis and fuzzy C-means clustering. Variations in heavy mineral association and mineral ratio in core Q43 revealed changes in provenance and depositional environment of the southern outer shelf of the East China Sea since the late Pleistocene, well corresponding to interglacial and glacial cycles.