Based on monthly mean surface air temperature (SAT) from 71 stations in northern China and NCEP/ NCAR and NOAA-CIRES (Cooperative Institute for Research in Environmental Sciences) twentieth century reanalysis data...Based on monthly mean surface air temperature (SAT) from 71 stations in northern China and NCEP/ NCAR and NOAA-CIRES (Cooperative Institute for Research in Environmental Sciences) twentieth century reanalysis data, the dominant modes of winter SAT over northem China were explored. The results showed that there are two modes that account for a majority of the total variance over northern China. The first mode is unanimously colder (warmer) over the whole of northern China. The second mode is characterized by a dipole structure that is colder (warmer) over Northwest China (NWC) and warmer (colder) over Northeast China (NEC), accounting for a fairly large proportion of the total variance. The two components constituting the second mode, the individual variations of winter SAT over NWC and NEC and their respective preceding factors, were further investigated. It was found that the autumn SAT anomalies are closely linked to persistent snow cover anomalies over Eurasia, showing the delayed effects on winter climate over northern China. Specifically, the previous autumn SAT anomalies over the Lake Baikal (LB; 50-60°N, 85-120°E) and Mongolian Plateau (MP; 42-52°N, 80-120°E) regions play an important role in adjusting the variations of winter SAT over NWC and NEC, respectively. The previous autumn SAT anomaly over the MP region may exert an influence on the winter SAT over NEC through modulating the strength and location of the East Asian major trough. The previous autumn SAT over the LB region may modulate winter westerlies at the middle and high latitudes of Asia and accordingly affects the invasion of cold air and associated winter SAT over NWC.展开更多
基金the support of the National Natural Science Foundation of China (Grant Nos. 41375090 and 41375089)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant No. 2013Z002)
文摘Based on monthly mean surface air temperature (SAT) from 71 stations in northern China and NCEP/ NCAR and NOAA-CIRES (Cooperative Institute for Research in Environmental Sciences) twentieth century reanalysis data, the dominant modes of winter SAT over northem China were explored. The results showed that there are two modes that account for a majority of the total variance over northern China. The first mode is unanimously colder (warmer) over the whole of northern China. The second mode is characterized by a dipole structure that is colder (warmer) over Northwest China (NWC) and warmer (colder) over Northeast China (NEC), accounting for a fairly large proportion of the total variance. The two components constituting the second mode, the individual variations of winter SAT over NWC and NEC and their respective preceding factors, were further investigated. It was found that the autumn SAT anomalies are closely linked to persistent snow cover anomalies over Eurasia, showing the delayed effects on winter climate over northern China. Specifically, the previous autumn SAT anomalies over the Lake Baikal (LB; 50-60°N, 85-120°E) and Mongolian Plateau (MP; 42-52°N, 80-120°E) regions play an important role in adjusting the variations of winter SAT over NWC and NEC, respectively. The previous autumn SAT anomaly over the MP region may exert an influence on the winter SAT over NEC through modulating the strength and location of the East Asian major trough. The previous autumn SAT over the LB region may modulate winter westerlies at the middle and high latitudes of Asia and accordingly affects the invasion of cold air and associated winter SAT over NWC.