期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
风雪绕流数值模拟的积雪预测模型研究 被引量:13
1
作者 刘多特 李永乐 汪斌 《工程力学》 EI CSCD 北大核心 2016年第8期122-131,共10页
为研究钝体风雪绕流效应下的地表积雪现象,根据壁面剪切机制及空间混合理论共同确立了积雪预测模型,采用欧拉框架单流体方法对1 m高度立方体模型周边的风雪两相流动情况及空间雪相浓度进行了求解。通过对比不同积雪模型下沉积预测指标... 为研究钝体风雪绕流效应下的地表积雪现象,根据壁面剪切机制及空间混合理论共同确立了积雪预测模型,采用欧拉框架单流体方法对1 m高度立方体模型周边的风雪两相流动情况及空间雪相浓度进行了求解。通过对比不同积雪模型下沉积预测指标在绕流区域的分布情况,及以此得到的积雪预测形态与实测结果的差异发现:该文采用的积雪模型不完全依赖于当地摩阻风速与临界起动风速的相对关系,一定程度上避免了模型参数的取值局限,对沉积现象的反映更为直观;由于综合了两套理论并引入沉积量估计的双重动态指标,该文对于雪面侵蚀及沉积区域的界定划分较为清晰,对积雪形态的预测包括雪面极值位置的捕捉、坡面起伏规律的再现,都较已有数值计算结果更为合理。模型方法可用于其他外形地物绕流下的地表积雪现象模拟。 展开更多
关键词 风吹雪 积雪预测模型 数值模拟 立方体模型 积雪形态
原文传递
新疆北部地区积雪深度变化特征及未来50a的预估 被引量:29
2
作者 王澄海 王芝兰 沈永平 《冰川冻土》 CSCD 北大核心 2010年第6期1059-1065,共7页
分析比较参加CMIP3计划的全球气候模式,在20C3M下各模式1961-1999年平均积雪深度和观测资料比较的基础上,检验了模式对积雪深度的模拟能力.在此基础上,选用INM-CM3.0和CGCM-T47_1模式对北疆地区未来50 a的积雪变化进行了预估.由于受GCM... 分析比较参加CMIP3计划的全球气候模式,在20C3M下各模式1961-1999年平均积雪深度和观测资料比较的基础上,检验了模式对积雪深度的模拟能力.在此基础上,选用INM-CM3.0和CGCM-T47_1模式对北疆地区未来50 a的积雪变化进行了预估.由于受GCM的空间分辨率和新疆北部地区地形、盆地沙漠下垫面、水汽来源和干旱气候环境的影响,CMIP3模式的GCM在新疆北部地区的模拟能力有限.通过相关系数和均方差误差的双重检验,选取了在新疆地区模拟能力较好的INM-CM3.0和CGCM-T47_1模式的模拟结果对新疆地区未来的积雪变化进行了预测.结果表明,在A1B、B1情景下,2002-2050年,总体上新疆北部地区的积雪深度均呈减少趋势;A2情景下,INM-CM3.0、CGCM-T47-1模式在准葛尔盆地地区积雪变化的模拟结果存在差异,但未来40 a新疆地区除天山附近外,积雪深度变化呈减少趋势. 展开更多
关键词 积雪深度 气候情景 CIMP3计划 积雪预测 新疆北部
下载PDF
第三极地区气温和积雪的季节-年际气候预测研究 被引量:2
3
作者 汪芋君 任宏利 王琳 《地球科学进展》 CAS CSCD 北大核心 2021年第2期198-210,共13页
第三极地区气候多样、灾害频发,是影响全球和亚洲气候异常的关键区域,针对此地区开展季节-年际气候预测研究对于提高区域预报技巧以及减少灾害造成的影响具有重要的科学和指导意义。基于国家气候中心气候预测业务模式(BCCCSM1.1m)的历... 第三极地区气候多样、灾害频发,是影响全球和亚洲气候异常的关键区域,针对此地区开展季节-年际气候预测研究对于提高区域预报技巧以及减少灾害造成的影响具有重要的科学和指导意义。基于国家气候中心气候预测业务模式(BCCCSM1.1m)的历史回报和预测数据,对第三极地区2 m气温和积雪的预测结果进行了确定性技巧评估,并分析了海洋因子对于预测技巧的调制作用。研究表明:该模式对于青藏高原及其周边地区气温和积雪的季节-年际气候预测具有一定的预测能力,对夏季气温的预测效果整体上好于冬季气温和积雪深度预测;预测技巧随着模式起报时间的提前而下降,但是存在技巧回升现象。研究也发现,海温异常因子对第三极地区的气候预测技巧具有不同程度的调制作用,厄尔尼诺等海洋信号能够通过直接和间接作用影响第三极地区的气候预测。 展开更多
关键词 季节—年际气候预测 第三极地区 气温和积雪预测 BCCCSM1.1m
原文传递
An Artificial Neural Network-Based Snow Cover Predictive Modeling in the Higher Himalayas 被引量:1
4
作者 Bhogendra MISHRA Nitin K.TRIPATHI Muk S.BABEL 《Journal of Mountain Science》 SCIE CSCD 2014年第4期825-837,共13页
With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantita... With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear autoregressive exogenous model, an artificial neural network (ANN), was deployed to predict the snow cover in the Kaligandaki river basin for the next 30 years. Observed climatic data, and snow covered area was used to train and test the model that captures the gross features of snow under the current climate scenario. The range of the likely effects of climate change on seasonal snow was assessed in the Himalayas using downscaled temperature and precipitation change projection from - HadCM3, a global circulation model to project future climate scenario, under the AIB emission scenario, which describes a future world of very rapid economic growth with balance use between fossil and non-fossil energy sources. The results show that there is a reduction of 9% to 46% of snow cover in different elevation zones during the considered time period, i.e., 2Oll to 2040. The 4700 m to 52oo m elevation zone is the most affected area and the area higher than 5200 m is the least affected. Overall, however, it is clear from the analysis that seasonal snow in the Kaligandaki basin is likely to be subject to substantialchanges due to the impact of climate change. 展开更多
关键词 Snow cover Kaligandai river HIMALAYAS Artificial neural network Global warming CLIMATECHANGE
下载PDF
Subseasonal prediction of winter precipitation in southern China using the early November snowpack over the Urals
5
作者 LI Jingyi LI Fei WANG Huijun 《Atmospheric and Oceanic Science Letters》 CSCD 2020年第6期534-541,共8页
Evolution of the autumn snowpack has been considered as a potential source for the subseasonal predictability of winter surface air temperature,but its linkage to precipitation variability has been less well discussed... Evolution of the autumn snowpack has been considered as a potential source for the subseasonal predictability of winter surface air temperature,but its linkage to precipitation variability has been less well discussed.This study shows that the snow water equivalent(SWE)over the Urals region in early(1–14)November is positively associated with precipitation in southern China during15–21 November and 6–15 January,based on the study period 1979/80–2016/17.In early November,a decreased Urals SWE warms the air locally via diabatic heating,indicative of significant land–atmosphere coupling over the Urals region.Meanwhile,a stationary Rossby wave train originates from the Urals and propagates along the polar-front jet stream.In mid(15–21)November,this Rossby wave train propagates downstream toward East Asia and,combined with the deepened East Asian trough,reduces the precipitation over southern China by lessening the water vapor transport.Thereafter,during 22 November to 5 January,there are barely any obvious circulation anomalies owing to the weak land–atmosphere coupling over the Urals.In early(6–15)January,the snowpack expands southward to the north of the Mediterranean Sea and cools the overlying atmosphere,suggestive of land–atmosphere coupling occurring over western Europe.A stationary Rossby wave train trapped in the subtropical westerly jet stream appears along with anomalous cyclonic circulation over Europe,and again with a deepened East Asian trough and less precipitation over southern China.The current findings have implications for winter precipitation prediction in southern China on the subseasonal timescale. 展开更多
关键词 Eurasian snow land–atmosphere coupling subseasonal predictability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部