A new paradigm of scalable routing for ICN is to combine a geometric routing scheme with a Distributed Hash Table. However, for most routing schemes in this paradigm, when a node joins or leaves, large numbers of node...A new paradigm of scalable routing for ICN is to combine a geometric routing scheme with a Distributed Hash Table. However, for most routing schemes in this paradigm, when a node joins or leaves, large numbers of nodes, even the whole topology, need to be re-embedded, and a great number of contents need to be re-registered. In this paper, we propose D-Griffin, a geometric routing scheme on flat names for dynamic topologies. D-Griffin provides two advantages. First, it avoids re-embedding the topology by using an online greedy embedding scheme and a void handling greedy forwarding scheme. Second, it decreases the number of re-registrations by using a name mapping scheme with a tradeoff between topology independence and load balancing. Theoretical and experimental analyses show that D-Griffin provides guaranteed content lookup, low description complexity, low path stretch, scalable routing update, and acceptable load balancing.展开更多
基金supported in part by the National Key Basic Research Program of China(973 Program) under Grant No. 2011CB302605,2013CB329602the National Natural Science Foundation of China under Grant No.61202457,61402149
文摘A new paradigm of scalable routing for ICN is to combine a geometric routing scheme with a Distributed Hash Table. However, for most routing schemes in this paradigm, when a node joins or leaves, large numbers of nodes, even the whole topology, need to be re-embedded, and a great number of contents need to be re-registered. In this paper, we propose D-Griffin, a geometric routing scheme on flat names for dynamic topologies. D-Griffin provides two advantages. First, it avoids re-embedding the topology by using an online greedy embedding scheme and a void handling greedy forwarding scheme. Second, it decreases the number of re-registrations by using a name mapping scheme with a tradeoff between topology independence and load balancing. Theoretical and experimental analyses show that D-Griffin provides guaranteed content lookup, low description complexity, low path stretch, scalable routing update, and acceptable load balancing.