At Olkaria (Kenya) geothermal energy has been used since 1981, to generate electricity and now there are currently 3 plants with a nominal capacity of 205 MW. Preliminary measurement and evaluation of possible mercu...At Olkaria (Kenya) geothermal energy has been used since 1981, to generate electricity and now there are currently 3 plants with a nominal capacity of 205 MW. Preliminary measurement and evaluation of possible mercury (Hg) emission from two plants has been investigated. Potential atmospheric Hg emission has been determined based on an existing model for estimating the transport of mercury along geothermal fluid flow streams as pertains to energy recovery and conversion from liquid dominated geothermal reservoirs. Hg concentrations, addition, retention and release rates were calculated at a number of locations in the geothermal power plants based on the plant operating parameters and steam flow process (turbine, condenser, non-condensable gas ejector, and cooling tower). Potential Hg emission rates through plume range from 0.455 g/h to 2.17 g/h, or 10-30 mg/h per MWe. The emission per hour per MWe is 130-300 times lower compared to Hg levels reported for 88 MWe five operating geothermal power plants around Mt. Amiata area in Italy. These emissions are coupled with a release of 1.07 kg/h per MW of hydrogen sulphide (HzS). The potential Hg release rates to the environment will depend greatly on the concentration of HzS in the system. Any higher HzS contents may reduce solubility of rig in the brine hence making it to be available in the steam. The volatile Hg may travel with the non-condensable gases as Hg vapour.展开更多
文摘At Olkaria (Kenya) geothermal energy has been used since 1981, to generate electricity and now there are currently 3 plants with a nominal capacity of 205 MW. Preliminary measurement and evaluation of possible mercury (Hg) emission from two plants has been investigated. Potential atmospheric Hg emission has been determined based on an existing model for estimating the transport of mercury along geothermal fluid flow streams as pertains to energy recovery and conversion from liquid dominated geothermal reservoirs. Hg concentrations, addition, retention and release rates were calculated at a number of locations in the geothermal power plants based on the plant operating parameters and steam flow process (turbine, condenser, non-condensable gas ejector, and cooling tower). Potential Hg emission rates through plume range from 0.455 g/h to 2.17 g/h, or 10-30 mg/h per MWe. The emission per hour per MWe is 130-300 times lower compared to Hg levels reported for 88 MWe five operating geothermal power plants around Mt. Amiata area in Italy. These emissions are coupled with a release of 1.07 kg/h per MW of hydrogen sulphide (HzS). The potential Hg release rates to the environment will depend greatly on the concentration of HzS in the system. Any higher HzS contents may reduce solubility of rig in the brine hence making it to be available in the steam. The volatile Hg may travel with the non-condensable gases as Hg vapour.