Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomi...Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomie mechanic systems with unilateral constraints axe established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups axe also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.展开更多
Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Suf...Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given. Hojman conserved quantity of Tzenoff equations for the systems through Lie symmetry in the condition of special Mei symmetry is obtained.展开更多
The Dirac equation is solved for Killingbeck potential. Under spin symmetry limit, the energy eigenvalues and the corresponding wave functions are obtained by using wave function ansatz method.
Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a...Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a Nielsen equation under the infinitesimal transformations of groups are given. Expression of Noether conserved quantity deduced directly from Noether symmetry of Nielsen equation for the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
For a relativistic Birkhoffian system, the Lie symmetrical perturbation and adiabatic invariants of generalized Bojman type are studied under general infinitesimal transformations. On the basis of the invariance of re...For a relativistic Birkhoffian system, the Lie symmetrical perturbation and adiabatic invariants of generalized Bojman type are studied under general infinitesimal transformations. On the basis of the invariance of relativistic Birkhotfian equations under general infinitesimal transformations,Lie symmetrical transformations of the system are constructed, which only depend on the Birkhoffian variables. The exact invariants in the form of generalized Hojman conserved quantities led by the Lie symmetries of relativistic Birkhoffian system without perturbations are given. Based on the definition of higher-order adiabatic invariants of a mechanical system, the perturbation of Lie symmetries for relativistic Birkhoffian system with the action of small disturbance is investigated, and a new type of adiabatic invariants of the system is obtained. In the end of the paper, an example is given to illustrate the application of the results.展开更多
Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the fir...Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function.展开更多
We propose a scheme for testing the small violations of the symmetrization postulate (SP) for photons in cavity QED. In the scheme, a degenerate A-type three-level atom is sent through a cavity field initially in a ...We propose a scheme for testing the small violations of the symmetrization postulate (SP) for photons in cavity QED. In the scheme, a degenerate A-type three-level atom is sent through a cavity field initially in a q-deformed coherent state. After an appropriate interaction time, the atom is measured by a state-selective detector. The probability that the atom makes a transition from one of the lower states to the other characterizes the violation of the SP. In the scheme, only one atom is required and classical fields are unnecessary, which is prior to the previous schemes.展开更多
In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré-Chetaev equations under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determ...In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré-Chetaev equations under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced.展开更多
For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,...For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results.展开更多
Two types of Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllablemechanical systems are reported.Criterion and restriction equations determining Mei symmetry after beingdistur...Two types of Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllablemechanical systems are reported.Criterion and restriction equations determining Mei symmetry after beingdisturbed of the system are established.Form and existence condition of Mei adiabatic invariants are obtained.展开更多
Approximate analytical solutions of the D-dimensional Klein-Gordon equation are obtained for the scalarand vector general Hulthen-type potential and position-dependent mass with any l by using the concept of supersymm...Approximate analytical solutions of the D-dimensional Klein-Gordon equation are obtained for the scalarand vector general Hulthen-type potential and position-dependent mass with any l by using the concept of supersymmetricquantum mechanics (SUSYQM).The problem is numerically discussed for some cases of parameters.展开更多
We investigate the behavior of the vacuum polarization of the gauge-boson Ⅱ and the wave-function renormalization factor of the fermion A in QEDs, using the coupled Dyson-Schwinger equations for the gauge-boson and f...We investigate the behavior of the vacuum polarization of the gauge-boson Ⅱ and the wave-function renormalization factor of the fermion A in QEDs, using the coupled Dyson-Schwinger equations for the gauge-boson and fermion propagator. Using several different ansatze for the fermion-gauge-boson vertex, we find that the wave-function renormalization factor .4 and especially the vacuum polarization Ⅱ have different behaviors in the dynamical chiral symmetry breaking phase and in the chiral symmetric phase and hence in the phenomenological applications of QED3 one should choose different forms of gauge-boson propagator for these two phases. We also find that when adopting a specific ansatze of the fermion-gauge-boson vertex (ansatze (3)) the vacuum polarization function equals its one-loop perturbative result in the chiral symmetric phase. This fact suggests that in QEDs the Wigner vacuum corresponds to the perturbative vacuum.展开更多
Two factorization approaches have been proposed for single transverse spin asymmetries. One is the cofiinear factorization, the other is the transverse-momentum-dependent factorization. They have been previously deriv...Two factorization approaches have been proposed for single transverse spin asymmetries. One is the cofiinear factorization, the other is the transverse-momentum-dependent factorization. They have been previously derived in a formal way by using diagram expansion at hadron level. If the two factorizations hold or can be proven, they should also hold when we replace hadrons with patton states. We examine these two factorizations at patton level with massless partons. It is nontrivial to generate these asymmetries at parton level with massless patrons because the asymmetries require helicity-flip and nonzero absorptive parts in scattering amplitudes. By constructing suitable patton states with massless partons we derive the two factorizations for the asymmetry in Drell-Yan processes. It is found from our results that the collinear factorization derived at parton level is not the same as that derived at hadron level. Our results with massless partons confirm those derived with single massive parton state in our previous works.展开更多
Recently F. Huang [Commun. Theor. Phys. 42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. 49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forci...Recently F. Huang [Commun. Theor. Phys. 42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. 49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forcing and dissipation on the beta-plane. This equation is governed by two dimensionless parameters, F and β, representing the ratio of the characteristic length scale to the Rossby radius of deformation and the variation of earth' angular rotation, respectively. In the present paper it is shown that in the case F ≠ 0 there exists a well-defined point transformation to set β = 0. The classification of one- and two-dimensional Lie subalgebras of the Lie symmetry algebra of the potential vorticity equation is given for the parameter combination F ≠ 0 and β = 0. Based upon this classification, distinct classes of group-invariant solutions are obtained and extended to the case β ≠0.展开更多
The Dirac equations with vector and scalar potentials of the Coulomb types in two and three dimensions are solved using the supersymmetric quantum mechanics method. For the system of such potentials, the analytical ex...The Dirac equations with vector and scalar potentials of the Coulomb types in two and three dimensions are solved using the supersymmetric quantum mechanics method. For the system of such potentials, the analytical expressions of the matrix dements for both position and momentum operators are obtained.展开更多
An analysis expression for the stationary probability distribution of asymmetric superconducting quantum interference device with two Josephson junctions (dc SQUID) driven by thermal noise is derived from two-dimensio...An analysis expression for the stationary probability distribution of asymmetric superconducting quantum interference device with two Josephson junctions (dc SQUID) driven by thermal noise is derived from two-dimensional Fokker-Planck equation, where the potential condition is satisfied. Two of the three asymmetric parameters, inductance asymmetric parameter η and critical current asymmetric parameter α, can be changed in this condition, but resistance asymmetric parameter ρ cannot be changed. The 'ripple' phenomenon of circulating current can disappear with the change of coefficient α. The effects of asymmetric parameters on current-voltage relationship and transfer function of dc SQUID system are also represented.展开更多
A system of nonlinear diffusion equations with three components is studied via the potential symmetry method. It is shown that the system admits the potential symmetries for certain diffusion terms. The invariant solu...A system of nonlinear diffusion equations with three components is studied via the potential symmetry method. It is shown that the system admits the potential symmetries for certain diffusion terms. The invariant solutions assoeiated with the potential symmetries are obtained.展开更多
This paper discusses a design method for the control system of a weigh feeder that supplies powder and granular material at a constant rate. Most weigh feeders employed in industry are controlled by proportional and i...This paper discusses a design method for the control system of a weigh feeder that supplies powder and granular material at a constant rate. Most weigh feeders employed in industry are controlled by proportional and integral (PI) compensation, and the control performance is decided by the selection of parameters. To attain advanced control performance by PI control, the PI parameters are designed on the basis of generalized minimum variance control (GMVC). In this study, to achieve user-specified control performance by GMVC-based PI control, the design parameters of GMVC are automatically adjusted using a performance-adaptive method. The control performance discussed in this study consists of the variance of the control error and that of the difference in the control input. In a conventional performance-adaptive method, the variance of the control error is reduced. In this study, to reduce energy consumption and to achieve user-specified control performance, the variance of the difference in the control input is specified and the design parameter is determined. To demonstrate its effectiveness, the proposed method is applied to an actual weigh feeder.展开更多
The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the co...The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.10572021the Preparatory Research Foundation of Jiangnan University under Grant No.2008LYY011
文摘Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomie mechanic systems with unilateral constraints axe established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups axe also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10672143 and 10572021
文摘Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given. Hojman conserved quantity of Tzenoff equations for the systems through Lie symmetry in the condition of special Mei symmetry is obtained.
文摘The Dirac equation is solved for Killingbeck potential. Under spin symmetry limit, the energy eigenvalues and the corresponding wave functions are obtained by using wave function ansatz method.
基金Supported by the National Natural Science Foundation of China under Grant No.10572021the Preparatory Research Foundation of Jiangnan University under Grant No.2008LYY011
文摘Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a Nielsen equation under the infinitesimal transformations of groups are given. Expression of Noether conserved quantity deduced directly from Noether symmetry of Nielsen equation for the system are obtained. Finally, an example is given to illustrate the application of the results.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10372053 and 10472040, the Natural Science Foundation of Hunan Province under Grant No. 03JJY3005, the Scientific Research Foundation of Eduction Department of Hunan Province under Grant No. 02C033 and the 0utstanding Young Talents Training Fund of Liaoning Province under Grant No. 309005
文摘For a relativistic Birkhoffian system, the Lie symmetrical perturbation and adiabatic invariants of generalized Bojman type are studied under general infinitesimal transformations. On the basis of the invariance of relativistic Birkhotfian equations under general infinitesimal transformations,Lie symmetrical transformations of the system are constructed, which only depend on the Birkhoffian variables. The exact invariants in the form of generalized Hojman conserved quantities led by the Lie symmetries of relativistic Birkhoffian system without perturbations are given. Based on the definition of higher-order adiabatic invariants of a mechanical system, the perturbation of Lie symmetries for relativistic Birkhoffian system with the action of small disturbance is investigated, and a new type of adiabatic invariants of the system is obtained. In the end of the paper, an example is given to illustrate the application of the results.
文摘Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function.
文摘We propose a scheme for testing the small violations of the symmetrization postulate (SP) for photons in cavity QED. In the scheme, a degenerate A-type three-level atom is sent through a cavity field initially in a q-deformed coherent state. After an appropriate interaction time, the atom is measured by a state-selective detector. The probability that the atom makes a transition from one of the lower states to the other characterizes the violation of the SP. In the scheme, only one atom is required and classical fields are unnecessary, which is prior to the previous schemes.
文摘In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré-Chetaev equations under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced.
基金国家自然科学基金,湖南省自然科学基金,the Scientific Research Foundation of Education Burean of Hunan Province
文摘For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results.
基金Supported by the Natural Science Foundation of Shandong Province under Grant No.ZR2009AQ011 Science Foundation of Binzhou University under Grant No.BZXYG0903
文摘Two types of Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllablemechanical systems are reported.Criterion and restriction equations determining Mei symmetry after beingdisturbed of the system are established.Form and existence condition of Mei adiabatic invariants are obtained.
文摘Approximate analytical solutions of the D-dimensional Klein-Gordon equation are obtained for the scalarand vector general Hulthen-type potential and position-dependent mass with any l by using the concept of supersymmetricquantum mechanics (SUSYQM).The problem is numerically discussed for some cases of parameters.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos, 10175033 and 10135030 and the Research Fund for the Doctoral Program of Higher Education under Grant No. 20030284009
文摘We investigate the behavior of the vacuum polarization of the gauge-boson Ⅱ and the wave-function renormalization factor of the fermion A in QEDs, using the coupled Dyson-Schwinger equations for the gauge-boson and fermion propagator. Using several different ansatze for the fermion-gauge-boson vertex, we find that the wave-function renormalization factor .4 and especially the vacuum polarization Ⅱ have different behaviors in the dynamical chiral symmetry breaking phase and in the chiral symmetric phase and hence in the phenomenological applications of QED3 one should choose different forms of gauge-boson propagator for these two phases. We also find that when adopting a specific ansatze of the fermion-gauge-boson vertex (ansatze (3)) the vacuum polarization function equals its one-loop perturbative result in the chiral symmetric phase. This fact suggests that in QEDs the Wigner vacuum corresponds to the perturbative vacuum.
基金Supported by National Natural Science Foundation of China under Grant Nos. 10721063, 10575126, and 10975169
文摘Two factorization approaches have been proposed for single transverse spin asymmetries. One is the cofiinear factorization, the other is the transverse-momentum-dependent factorization. They have been previously derived in a formal way by using diagram expansion at hadron level. If the two factorizations hold or can be proven, they should also hold when we replace hadrons with patton states. We examine these two factorizations at patton level with massless partons. It is nontrivial to generate these asymmetries at parton level with massless patrons because the asymmetries require helicity-flip and nonzero absorptive parts in scattering amplitudes. By constructing suitable patton states with massless partons we derive the two factorizations for the asymmetry in Drell-Yan processes. It is found from our results that the collinear factorization derived at parton level is not the same as that derived at hadron level. Our results with massless partons confirm those derived with single massive parton state in our previous works.
基金supported by the Austrian Science Fund (FWF),project P20632
文摘Recently F. Huang [Commun. Theor. Phys. 42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. 49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forcing and dissipation on the beta-plane. This equation is governed by two dimensionless parameters, F and β, representing the ratio of the characteristic length scale to the Rossby radius of deformation and the variation of earth' angular rotation, respectively. In the present paper it is shown that in the case F ≠ 0 there exists a well-defined point transformation to set β = 0. The classification of one- and two-dimensional Lie subalgebras of the Lie symmetry algebra of the potential vorticity equation is given for the parameter combination F ≠ 0 and β = 0. Based upon this classification, distinct classes of group-invariant solutions are obtained and extended to the case β ≠0.
基金National Natural Science Foundation of China under Grant Nos.10125521 and 60371013the 973 State Key Basic Research Development Project of China under Grant No.G2000077400
文摘The Dirac equations with vector and scalar potentials of the Coulomb types in two and three dimensions are solved using the supersymmetric quantum mechanics method. For the system of such potentials, the analytical expressions of the matrix dements for both position and momentum operators are obtained.
文摘An analysis expression for the stationary probability distribution of asymmetric superconducting quantum interference device with two Josephson junctions (dc SQUID) driven by thermal noise is derived from two-dimensional Fokker-Planck equation, where the potential condition is satisfied. Two of the three asymmetric parameters, inductance asymmetric parameter η and critical current asymmetric parameter α, can be changed in this condition, but resistance asymmetric parameter ρ cannot be changed. The 'ripple' phenomenon of circulating current can disappear with the change of coefficient α. The effects of asymmetric parameters on current-voltage relationship and transfer function of dc SQUID system are also represented.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10371098 and 10447007 and the Program for New Century Excellent Talents in Universities (NCET)
文摘A system of nonlinear diffusion equations with three components is studied via the potential symmetry method. It is shown that the system admits the potential symmetries for certain diffusion terms. The invariant solutions assoeiated with the potential symmetries are obtained.
文摘This paper discusses a design method for the control system of a weigh feeder that supplies powder and granular material at a constant rate. Most weigh feeders employed in industry are controlled by proportional and integral (PI) compensation, and the control performance is decided by the selection of parameters. To attain advanced control performance by PI control, the PI parameters are designed on the basis of generalized minimum variance control (GMVC). In this study, to achieve user-specified control performance by GMVC-based PI control, the design parameters of GMVC are automatically adjusted using a performance-adaptive method. The control performance discussed in this study consists of the variance of the control error and that of the difference in the control input. In a conventional performance-adaptive method, the variance of the control error is reduced. In this study, to reduce energy consumption and to achieve user-specified control performance, the variance of the difference in the control input is specified and the design parameter is determined. To demonstrate its effectiveness, the proposed method is applied to an actual weigh feeder.
基金Project(2010-K2-8)supported by Science and Technology Program of the Ministry of Housing and Urban Rural Development,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.