Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations o...Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations of 1% (KI), 3% ([(2), 6% (K3) and 9% (l(4) were tested for wheat straw pretreatment at ambient temperature with a C:N ratio of 25:1.86% of total solids (TS), 89% of volatile solids (VS) and 22% of lignocellulose, cellulose and hemi- cellulose (LCH) (22%) were decomposed effectively with the wheat straw pretreated by 6% KOH. Enhanced bio- gas production and cumulative biomethane yield of 258 ml. (g VS)-1 were obtained increased by 45% and 41% respectively, compared with untreated wheat straw. Pretreated wheat straw digestion also yielded a digestate with higher fertilizer values potassium (l 38%), calcium (22%) and magnesium (16%). These results show that TS, VS and LCH can be effectively removed from wheat straw pretreated with KOH, improving biodegradability biomethane production and fertilizer value.展开更多
Supercritical carbon dioxide,with water-ethanol as co-solvent,was applied to pretreat corn stover to enhance its enzymatic hydrolysis.The efficiency of pretreatment was evaluated by the final reducing sugar yield obta...Supercritical carbon dioxide,with water-ethanol as co-solvent,was applied to pretreat corn stover to enhance its enzymatic hydrolysis.The efficiency of pretreatment was evaluated by the final reducing sugar yield obtained from the enzymatic hydrolysis of cellulose.Under the operation conditions of pretreatment pressure 15 MPa,temperature 180 ℃ and time 1 h,the optimal sugar yield of 77.8℅ was obtained.Scanning electron microscopy(SEM) and chemical composition analysis were applied to the pretreated corn stover.The results showed that the surface morphology and microscopic structure of pretreated corn stover were greatly changed.After the pretreatment,the contents of hemicellulose and lignin were reduced obviously.Thus more cellulose was exposed,increasing the sugar yield.展开更多
Aqueous ammonia was used to pretreat wheat straw to improve biodegradability and provide nitrogen source for enhancing biogas production. Three doses of ammonia(2%, 4%, and 6%, dry matter) and three moisture contents(...Aqueous ammonia was used to pretreat wheat straw to improve biodegradability and provide nitrogen source for enhancing biogas production. Three doses of ammonia(2%, 4%, and 6%, dry matter) and three moisture contents(30%, 60%, and 80%, dry matter) were applied to pretreat wheat straw for 7 days. The pretreated wheat straws were anaerobically digested at three loading rates(50, 65, and 80 g·L-1) to produce biogas. The results indicated that the wheat straw pretreated with 80% moisture content and 4% ammonia achieved the highest methane yield of 199.7 ml·g-1(based on per unit volatile solids loaded), with shorter digestion time(T80) of 25 days at the loading rate of 65 g·L-1compared to untreated one. The main chemical compositions of wheat straw were also analyzed. The cellulose and hemicellulose contents were decomposed by 2%-20% and 26%-42%, respectively,while the lignin content was hardly removed, cold-water and hot-water extracts were increased by 4%-44%, and12%-52%, respectively, for the ammonia-pretreated wheat straws at different moisture contents. The appropriate C/N ratio and decomposition of original chemical compositions into relatively readily biodegradable substances will improve the biodegradability and biogas yield.展开更多
A sustainable process was explored for the preparation of 5-hydroxymethylfurfural(HMF) by catalytic degradation of the waste cotton stalk. Solid super-acid(SO_4^(2-)/ZrO_2) was used as an efficient catalyst for the de...A sustainable process was explored for the preparation of 5-hydroxymethylfurfural(HMF) by catalytic degradation of the waste cotton stalk. Solid super-acid(SO_4^(2-)/ZrO_2) was used as an efficient catalyst for the degradation of cotton stalk. Both decomposition experiments and kinetic study were conducted for the exploration of degradation condition and kinetics mechanism. The optimized experimental conditions are reaction temperature 503 K, reaction time 75 min and dosage of catalyst 30%(mass fraction) based on the decomposition experiments, under which a maximum yield of 27.2% for HMF could be achieved. Kinetic study was then carried out in the presence of SO_4^(2-)/ZrO_2. The theoretical results indicate that the activation energies for reducing sugar and HMF with catalyst are 96.71 k J/mol, 84.21 kJ/mol in the presence of SO_4^(2-)/ZrO_2, and they are 105.96 k J/mol and 119.37 k J/mol in the absence of SO_4^(2-)/ZrO_2.展开更多
基金Supported by Specialized Research Fund for the Doctoral Program of Higer Education(20120010110004)the Natural Science Foundation of Beijing(8142030)
文摘Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations of 1% (KI), 3% ([(2), 6% (K3) and 9% (l(4) were tested for wheat straw pretreatment at ambient temperature with a C:N ratio of 25:1.86% of total solids (TS), 89% of volatile solids (VS) and 22% of lignocellulose, cellulose and hemi- cellulose (LCH) (22%) were decomposed effectively with the wheat straw pretreated by 6% KOH. Enhanced bio- gas production and cumulative biomethane yield of 258 ml. (g VS)-1 were obtained increased by 45% and 41% respectively, compared with untreated wheat straw. Pretreated wheat straw digestion also yielded a digestate with higher fertilizer values potassium (l 38%), calcium (22%) and magnesium (16%). These results show that TS, VS and LCH can be effectively removed from wheat straw pretreated with KOH, improving biodegradability biomethane production and fertilizer value.
文摘Supercritical carbon dioxide,with water-ethanol as co-solvent,was applied to pretreat corn stover to enhance its enzymatic hydrolysis.The efficiency of pretreatment was evaluated by the final reducing sugar yield obtained from the enzymatic hydrolysis of cellulose.Under the operation conditions of pretreatment pressure 15 MPa,temperature 180 ℃ and time 1 h,the optimal sugar yield of 77.8℅ was obtained.Scanning electron microscopy(SEM) and chemical composition analysis were applied to the pretreated corn stover.The results showed that the surface morphology and microscopic structure of pretreated corn stover were greatly changed.After the pretreatment,the contents of hemicellulose and lignin were reduced obviously.Thus more cellulose was exposed,increasing the sugar yield.
基金Supported by the National High Technology Research and Development Program of China(2008AA062401)the China-US International Cooperation Project(2011DFA90800)the Ministry of Science and Technology,China
文摘Aqueous ammonia was used to pretreat wheat straw to improve biodegradability and provide nitrogen source for enhancing biogas production. Three doses of ammonia(2%, 4%, and 6%, dry matter) and three moisture contents(30%, 60%, and 80%, dry matter) were applied to pretreat wheat straw for 7 days. The pretreated wheat straws were anaerobically digested at three loading rates(50, 65, and 80 g·L-1) to produce biogas. The results indicated that the wheat straw pretreated with 80% moisture content and 4% ammonia achieved the highest methane yield of 199.7 ml·g-1(based on per unit volatile solids loaded), with shorter digestion time(T80) of 25 days at the loading rate of 65 g·L-1compared to untreated one. The main chemical compositions of wheat straw were also analyzed. The cellulose and hemicellulose contents were decomposed by 2%-20% and 26%-42%, respectively,while the lignin content was hardly removed, cold-water and hot-water extracts were increased by 4%-44%, and12%-52%, respectively, for the ammonia-pretreated wheat straws at different moisture contents. The appropriate C/N ratio and decomposition of original chemical compositions into relatively readily biodegradable substances will improve the biodegradability and biogas yield.
基金Project(2010DFA41440)supported by China-Japan International CooperationProject(2016TP1007)supported by the Hunan Provincial Science and Technology Plan,ChinaProject(21376269)supported by the National Natural Science Foundation of China
文摘A sustainable process was explored for the preparation of 5-hydroxymethylfurfural(HMF) by catalytic degradation of the waste cotton stalk. Solid super-acid(SO_4^(2-)/ZrO_2) was used as an efficient catalyst for the degradation of cotton stalk. Both decomposition experiments and kinetic study were conducted for the exploration of degradation condition and kinetics mechanism. The optimized experimental conditions are reaction temperature 503 K, reaction time 75 min and dosage of catalyst 30%(mass fraction) based on the decomposition experiments, under which a maximum yield of 27.2% for HMF could be achieved. Kinetic study was then carried out in the presence of SO_4^(2-)/ZrO_2. The theoretical results indicate that the activation energies for reducing sugar and HMF with catalyst are 96.71 k J/mol, 84.21 kJ/mol in the presence of SO_4^(2-)/ZrO_2, and they are 105.96 k J/mol and 119.37 k J/mol in the absence of SO_4^(2-)/ZrO_2.