[Objective]The aim was to study the effects of regulation of C/N ratio wheat straw application on tobacco nitrogen,phosphorus and potassium uptake. [Method]Effects of regulation C/N ratio wheat straw application on th...[Objective]The aim was to study the effects of regulation of C/N ratio wheat straw application on tobacco nitrogen,phosphorus and potassium uptake. [Method]Effects of regulation C/N ratio wheat straw application on the flue-cured tobacco yield,output value,nitrogen,phosphorus and potassium content and cumulative uptake of the upper,middle and bottom leaf were studied by using the field plot experiments at Banqiao town,Qujing city,Yunnan Province during the 2008-2009 summer growing seasons. [Result]The results showed that the application of wheat straw alone or after C/N regulation,could significantly increase tobacco production,potassium content,the potassium and nitrogen accumulation amount of leaf,and was more conducive to the potassium uptake of tobacco leaf with wheat straw application after C/N regulation. Compared with non-straw application,the yield of tobacco increased by 6.59%,3.58%,5.98%,8.80% with application of wheat straw alone,wheat straw and vetch,wheat straw and oilseed cake,wheat straw and urea nitrogen,the potassium content in tobacco leaf increased by 3.85%,7.76%,8.82%,11.21%,respectively,the total potassium cumulative amount of leaf increased by 10.71%,11.62%,15.32% ,21.01% and the total nitrogen cumulative amount increased by 9.76%,1.22%,8.14%,14.00%. However,the differences of tobacco leaf nitrogen content among the different treatments were not significant,the phosphorus uptake of tobacco leaf decreased. [Conclusion]application of high C/N ratio wheat straw in flue-cured tobacco production,which should be concerned not only to adjust C/N ratio by adding nitrogen,but also considering additional phosphorus application.展开更多
A long-term experiment was conducted to investigate how long-term fertilization and rice straw incorporation into soil affect soil glomalin, C and N. The combined application of chemical fertilizer and straw resulted ...A long-term experiment was conducted to investigate how long-term fertilization and rice straw incorporation into soil affect soil glomalin, C and N. The combined application of chemical fertilizer and straw resulted in a significant increase in both soil easily extractable glomalin (EEG) and total glomalin (TG) concentrations, as compared with application of only chemical fertilizer or no fertilizer application. The EEG and TG concentrations of the NPKS (nitrogen, phosphorus, and potassium fertilizer application + rice straw return) plot were 4.68% and 5.67% higher than those of the CK (unfertilized control) plot, and 9.87% and 6.23% higher than those of the NPK (nitrogen, phosphorus, and potassium fertilizer applied annually) plot, respectively. Application of only chemical fertilizer did not cause a statistically significant change of soil glomalin compared with no fertilizer application. The changes of soil organic C (SOC) and total N (TN) contents demonstrated a similar trend to soil glomalin in these plots. The SOC and TN contents of NPKS plot were 15.01% and 9.18% higher than those of the CK plot, and 8.85% and 14.76% higher than those of the NPK plot, respectively. Rice straw return also enhanced the contents of microbial biomass C (MBC) and microbial biomass N (MBN) in the NPKS plot by 7.76% for MBC and 31.42% for MBN compared with the CK plot, and 12.66% for MBC and 15.07% for MBN compared with the NPK plots, respectively. Application of only chemical fertilizer, however, increased MBN concentration, but decreased MBC concentration in soil.展开更多
Excessive amounts of nitrate have accumulated in many soils on the North China Plain due to the large amounts of chemical N fertilizers or manures used in combination with low carbon inputs. We investigated the potent...Excessive amounts of nitrate have accumulated in many soils on the North China Plain due to the large amounts of chemical N fertilizers or manures used in combination with low carbon inputs. We investigated the potential of different carbon substrates added to transform soil nitrate into soil organic N (SON). A 56-d laboratory incubation experiment using the 15N tracer (K15NO3) technique was carried out to elucidate the proportion of SON derived from accumulated soil nitrate following amendment with glucose or maize straw at controlled soil temperature and moisture. The dynamics and isotopic abundance of mineral N (NO3 and NH4+) and SON and greenhouse gas (N20 and CO2) emissions during the incubation were investigated. Although carbon amendments markedly stimulated transformation of nitrate to newly formed SON, this was only a substitution effect of the newly formed SON with native SON because SON at the end of the incubation period was not significantly different (P 〉 0.05) from that in control soil without added C. At the end of the incubation period, amendment with glucose, a readily available C source, increased nitrate immobilization by 2.65 times and total N20-N emission by 33.7 times, as compared with maize straw amendment. Moreover, the differences in SON and total N20-N emission between the treatments with glucose and maize straw were significant (P 〈 0.05). However, the total N20-N emission in the straw treatment was not significantly (P ~ 0.05) greater than that in the control. Straw amendment may be a potential option in agricultural practice for transformation of nitrate N to SON and minimization of N20 emitted as well as restriction of NO3-N leaching.展开更多
基金Supported by National Science and Technology Support Program(2006BAD05B06-04)~~
文摘[Objective]The aim was to study the effects of regulation of C/N ratio wheat straw application on tobacco nitrogen,phosphorus and potassium uptake. [Method]Effects of regulation C/N ratio wheat straw application on the flue-cured tobacco yield,output value,nitrogen,phosphorus and potassium content and cumulative uptake of the upper,middle and bottom leaf were studied by using the field plot experiments at Banqiao town,Qujing city,Yunnan Province during the 2008-2009 summer growing seasons. [Result]The results showed that the application of wheat straw alone or after C/N regulation,could significantly increase tobacco production,potassium content,the potassium and nitrogen accumulation amount of leaf,and was more conducive to the potassium uptake of tobacco leaf with wheat straw application after C/N regulation. Compared with non-straw application,the yield of tobacco increased by 6.59%,3.58%,5.98%,8.80% with application of wheat straw alone,wheat straw and vetch,wheat straw and oilseed cake,wheat straw and urea nitrogen,the potassium content in tobacco leaf increased by 3.85%,7.76%,8.82%,11.21%,respectively,the total potassium cumulative amount of leaf increased by 10.71%,11.62%,15.32% ,21.01% and the total nitrogen cumulative amount increased by 9.76%,1.22%,8.14%,14.00%. However,the differences of tobacco leaf nitrogen content among the different treatments were not significant,the phosphorus uptake of tobacco leaf decreased. [Conclusion]application of high C/N ratio wheat straw in flue-cured tobacco production,which should be concerned not only to adjust C/N ratio by adding nitrogen,but also considering additional phosphorus application.
基金Project supported by the National Key Basic Research Support Foundation of China (No.2002CB410810).
文摘A long-term experiment was conducted to investigate how long-term fertilization and rice straw incorporation into soil affect soil glomalin, C and N. The combined application of chemical fertilizer and straw resulted in a significant increase in both soil easily extractable glomalin (EEG) and total glomalin (TG) concentrations, as compared with application of only chemical fertilizer or no fertilizer application. The EEG and TG concentrations of the NPKS (nitrogen, phosphorus, and potassium fertilizer application + rice straw return) plot were 4.68% and 5.67% higher than those of the CK (unfertilized control) plot, and 9.87% and 6.23% higher than those of the NPK (nitrogen, phosphorus, and potassium fertilizer applied annually) plot, respectively. Application of only chemical fertilizer did not cause a statistically significant change of soil glomalin compared with no fertilizer application. The changes of soil organic C (SOC) and total N (TN) contents demonstrated a similar trend to soil glomalin in these plots. The SOC and TN contents of NPKS plot were 15.01% and 9.18% higher than those of the CK plot, and 8.85% and 14.76% higher than those of the NPK plot, respectively. Rice straw return also enhanced the contents of microbial biomass C (MBC) and microbial biomass N (MBN) in the NPKS plot by 7.76% for MBC and 31.42% for MBN compared with the CK plot, and 12.66% for MBC and 15.07% for MBN compared with the NPK plots, respectively. Application of only chemical fertilizer, however, increased MBN concentration, but decreased MBC concentration in soil.
基金Project supported by the National Natural Science Foundation of China(NSFC)(Nos.31172033 and 41101277)the National Science Basic Research Program of China(No.2007CB109308)+2 种基金the Foundation of the Chinese Ministry of Education for Ph.D.Work(No.20100008110004)the German Research Foundation (DFG)(No.IRTG 1070)the Innovation Group Grant of the National Natural Science Foundation of China(No.31121062)
文摘Excessive amounts of nitrate have accumulated in many soils on the North China Plain due to the large amounts of chemical N fertilizers or manures used in combination with low carbon inputs. We investigated the potential of different carbon substrates added to transform soil nitrate into soil organic N (SON). A 56-d laboratory incubation experiment using the 15N tracer (K15NO3) technique was carried out to elucidate the proportion of SON derived from accumulated soil nitrate following amendment with glucose or maize straw at controlled soil temperature and moisture. The dynamics and isotopic abundance of mineral N (NO3 and NH4+) and SON and greenhouse gas (N20 and CO2) emissions during the incubation were investigated. Although carbon amendments markedly stimulated transformation of nitrate to newly formed SON, this was only a substitution effect of the newly formed SON with native SON because SON at the end of the incubation period was not significantly different (P 〉 0.05) from that in control soil without added C. At the end of the incubation period, amendment with glucose, a readily available C source, increased nitrate immobilization by 2.65 times and total N20-N emission by 33.7 times, as compared with maize straw amendment. Moreover, the differences in SON and total N20-N emission between the treatments with glucose and maize straw were significant (P 〈 0.05). However, the total N20-N emission in the straw treatment was not significantly (P ~ 0.05) greater than that in the control. Straw amendment may be a potential option in agricultural practice for transformation of nitrate N to SON and minimization of N20 emitted as well as restriction of NO3-N leaching.