Resonance due to critical slope makes the internal wave generation more effectively than that due to supercritical or subcritical slopes(Zhang et al., 2008). Submarine ridges make a greater contribution to ocean mixin...Resonance due to critical slope makes the internal wave generation more effectively than that due to supercritical or subcritical slopes(Zhang et al., 2008). Submarine ridges make a greater contribution to ocean mixing than continental margins in global oceans(Müller, 1977; Bell, 1975; Baines, 1982; Morozov, 1995). In this paper, internal wave generation driven by tidal flow over critical topography is examined in laboratory using Particle Image Velocimetry(PIV) and synthetic schlieren methods in synchrony. Non-tidal baroclinic velocities and vertical isopycnal displacements are observed in three representative regions, i.e., critical, outward-propagating, and reflection regions. Temporal and spatial distributions of internal wave rays are analyzed using the time variations of baroclinic velocities and vertical isopycnal displacement, and the results are consistent with those by the linear internal wave theory. Besides, the width of wave beam changes with the outward propagation of internal waves. Finally, through monitoring the uniformly-spaced 14 vertical profiles in the x-z plane, the internal wave fields of density and velocity fields are constructed. Thus, available potential energy, kinetic energy and energy fluxes are determined quantitatively. The distributions of baroclinic energy and energy fluxes are confined along the internal wave rays. The total depth averaged energy and energy flux of vertical profiles away from a ridge are both larger than those near the ridge.展开更多
A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one...A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one or several existing shear surfaces. The framework is developed based on a thorough analysis of the scientific literature and with reference to significant reported case studies for which a consistent dataset of continuous displacement measurements is available. Three distinct trends of movement are defined to characterize the kinematic behavior of the active stages of slow-moving landslides in a velocity-time plot: a linear trend-type I, which is appropriate for stationary phenomena; a convex shaped trend-type II, which is associated with rapid increases in pore water pressure due to rainfall, followed by a slow decrease in the groundwater level with time; and a concave shaped trend-type III, which denotes a non-stationary process related to the presence of new boundary conditions such as those associated with the development of a newly formed local slip surface that connects with the main existing slip surface. Within the proposed framework, a model is developed to forecast future displacements for active stages of trend-type II based on displacement measurements at the beginning of the stage. The proposed model is validated by application to two case studies.展开更多
Chrornophore structures inspired by natural green fluorescent protein (GFP) play an im- portant role in the field of bio-irnaging. In this work, photochemical properties of a new class of GFP-like chromophores are i...Chrornophore structures inspired by natural green fluorescent protein (GFP) play an im- portant role in the field of bio-irnaging. In this work, photochemical properties of a new class of GFP-like chromophores are investigated using computational approaches. Thermo- dynamically stable isomers are identified in vacuum and in solvent. Spectral Stokes shifts are computed and compared to experiments. An inverted solvatochromic shift between absorption and emission emerging in this new class of GFP-like chromophores is observed, and attributed to the stabilized charge transfer and inhibited rotational structural reorganization in solvent.展开更多
This paper proposes a precise localization algorithm for a quickly moving mobile robot.In order to localize a mobile robot with active beacon sensors,a relatively long time is needed,since the distance to the beacon i...This paper proposes a precise localization algorithm for a quickly moving mobile robot.In order to localize a mobile robot with active beacon sensors,a relatively long time is needed,since the distance to the beacon is measured by transmitting time of the ultrasonic signal.The measurement time does not cause a high error rate when the mobile robot moves slowly.However,with an increase of the mobile robot’s speed,the localization error becomes too high to use for accurate mobile robot navigation.Therefore,in this research into high speed mobile robot operations,instead of using two active beacons for localization,an active beacon and dual compass are utilized to localize the mobile robot.This new approach resolves the high localization error caused by the speed of the mobile robot.The performance of the precise localization algorithm is verified by comparing it to the conventional method through real-world experiments.展开更多
For earthquake and tsunami early warning and emergency response,the earthquake epicenter and magnitude should be determined rapidly and correctly.Using high-rate GPS observations,we can readily obtain precise and high...For earthquake and tsunami early warning and emergency response,the earthquake epicenter and magnitude should be determined rapidly and correctly.Using high-rate GPS observations,we can readily obtain precise and high resolution displacement time series and the seismic waveforms during the earthquake.In this paper,a new algorithm is proposed for estimating the earthquake epicenter and magnitude with the seismic waveforms derived from high-rate GPS data during the earthquake.A case study of the 2008 Wenchuan earthquake is conducted from 1 Hz GPS data and the epicenter and magnitude are determined.Compared with the results issued by the China Seismological Bureau,the estimation error of the epicenter and the magnitude is about 12 km and 0.1 magnitude unit,respectively.It has shown that high-rate GPS could be a new tool feasible for estimating the earthquake epicenter and magnitude,independent of or combined with seismometers.展开更多
A method of the fuzzy cross-correlation factor exponent in dynamics is researched and proposed to diagnose abnormality of cracks in the concrete dam. Moreover, the Logistic time series changing from period-doubling bi...A method of the fuzzy cross-correlation factor exponent in dynamics is researched and proposed to diagnose abnormality of cracks in the concrete dam. Moreover, the Logistic time series changing from period-doubling bifurcation to chaos is tested first using this method. Results indicate that it can distinguish inherent dynamics of time series and can detect mutations. Considering that cracks in the concrete dam constitute an open, dissipative and complex nonlinear dynamical system, a typical crack on the downstream face of a concrete gravity arch dam is analyzed with the proposed method. Two distinct mutations are discovered to indicate that the abnormality diagnosis of cracks in the concrete dam is achieved dynamically through this method. Furthermore, because it can be directly utilized in the measured crack opening displacement series to complete abnormality diagnosis, it has a good prospect for practical applications.展开更多
We report two models of the lateral displacement of acoustic-wave scattering on a fluid-solid interface that reveal an acoustic analog of the Goos-Hainchen effect in optics. This acoustic analog is called the acoustic...We report two models of the lateral displacement of acoustic-wave scattering on a fluid-solid interface that reveal an acoustic analog of the Goos-Hainchen effect in optics. This acoustic analog is called the acoustic Goos-Hainchen effect. Using newly proposed models, we made numerical calculations for the system ofa water-Perspex interface. Specifically, in the post-critical-angle region, we observed a lateral displacement (and transition time) of the reflected P-wave with respect to the incident P-wave. The first arrival of the acoustic signal from the interface is found to be a reflected P-wave rather than the sliding-refraction P-wave usually described in traditional acoustic-logging sliding P-wave theory. For both proposed models, the effective propagation speed of the reflected P-wave along the interface depends on not only the physical properties of the interracial media but also the incident angle. These observations are intriguing and warrant further investigation.展开更多
We investigate the evolution dynamics of a two-level atom system interacting with the massless scalar field in a Cylindrical spacetime. We find that both the energy shifts of ground state and excited state can be sepa...We investigate the evolution dynamics of a two-level atom system interacting with the massless scalar field in a Cylindrical spacetime. We find that both the energy shifts of ground state and excited state can be separated into two parts due to the vacuum fluctuations. One is the corresponding energy shift for a rest atom in four-dimensional Minkowski space without spatial compactification, the other is just the modification of the spatial compactified periodic length. It will reveal that the influence of the presence of one spatial compactified dimension can not be neglected in Lamb shift as the relative energy level shift of an ~tom.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 40906001 and 40906099)National 863 High-Tech Program (No. 2008AA09A402)Chinese National Science & Technology Supporting Program (No. 2011BAC03B02-03-02)
文摘Resonance due to critical slope makes the internal wave generation more effectively than that due to supercritical or subcritical slopes(Zhang et al., 2008). Submarine ridges make a greater contribution to ocean mixing than continental margins in global oceans(Müller, 1977; Bell, 1975; Baines, 1982; Morozov, 1995). In this paper, internal wave generation driven by tidal flow over critical topography is examined in laboratory using Particle Image Velocimetry(PIV) and synthetic schlieren methods in synchrony. Non-tidal baroclinic velocities and vertical isopycnal displacements are observed in three representative regions, i.e., critical, outward-propagating, and reflection regions. Temporal and spatial distributions of internal wave rays are analyzed using the time variations of baroclinic velocities and vertical isopycnal displacement, and the results are consistent with those by the linear internal wave theory. Besides, the width of wave beam changes with the outward propagation of internal waves. Finally, through monitoring the uniformly-spaced 14 vertical profiles in the x-z plane, the internal wave fields of density and velocity fields are constructed. Thus, available potential energy, kinetic energy and energy fluxes are determined quantitatively. The distributions of baroclinic energy and energy fluxes are confined along the internal wave rays. The total depth averaged energy and energy flux of vertical profiles away from a ridge are both larger than those near the ridge.
基金partially supported by the University of Salerno (Italy) through the Civil and Environmental Engineering Ph.D. programme and FARB research funding
文摘A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one or several existing shear surfaces. The framework is developed based on a thorough analysis of the scientific literature and with reference to significant reported case studies for which a consistent dataset of continuous displacement measurements is available. Three distinct trends of movement are defined to characterize the kinematic behavior of the active stages of slow-moving landslides in a velocity-time plot: a linear trend-type I, which is appropriate for stationary phenomena; a convex shaped trend-type II, which is associated with rapid increases in pore water pressure due to rainfall, followed by a slow decrease in the groundwater level with time; and a concave shaped trend-type III, which denotes a non-stationary process related to the presence of new boundary conditions such as those associated with the development of a newly formed local slip surface that connects with the main existing slip surface. Within the proposed framework, a model is developed to forecast future displacements for active stages of trend-type II based on displacement measurements at the beginning of the stage. The proposed model is validated by application to two case studies.
基金supported by US National Science Foundation(CHE-1565520) to X. Lifunded by the STF at the University of Washingtonthe National Science Foundation (MRI-1624430).
文摘Chrornophore structures inspired by natural green fluorescent protein (GFP) play an im- portant role in the field of bio-irnaging. In this work, photochemical properties of a new class of GFP-like chromophores are investigated using computational approaches. Thermo- dynamically stable isomers are identified in vacuum and in solvent. Spectral Stokes shifts are computed and compared to experiments. An inverted solvatochromic shift between absorption and emission emerging in this new class of GFP-like chromophores is observed, and attributed to the stabilized charge transfer and inhibited rotational structural reorganization in solvent.
基金supported by the MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2011-C1090-1121-0010)
文摘This paper proposes a precise localization algorithm for a quickly moving mobile robot.In order to localize a mobile robot with active beacon sensors,a relatively long time is needed,since the distance to the beacon is measured by transmitting time of the ultrasonic signal.The measurement time does not cause a high error rate when the mobile robot moves slowly.However,with an increase of the mobile robot’s speed,the localization error becomes too high to use for accurate mobile robot navigation.Therefore,in this research into high speed mobile robot operations,instead of using two active beacons for localization,an active beacon and dual compass are utilized to localize the mobile robot.This new approach resolves the high localization error caused by the speed of the mobile robot.The performance of the precise localization algorithm is verified by comparing it to the conventional method through real-world experiments.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41104024, 41231174 & 41274049)
文摘For earthquake and tsunami early warning and emergency response,the earthquake epicenter and magnitude should be determined rapidly and correctly.Using high-rate GPS observations,we can readily obtain precise and high resolution displacement time series and the seismic waveforms during the earthquake.In this paper,a new algorithm is proposed for estimating the earthquake epicenter and magnitude with the seismic waveforms derived from high-rate GPS data during the earthquake.A case study of the 2008 Wenchuan earthquake is conducted from 1 Hz GPS data and the epicenter and magnitude are determined.Compared with the results issued by the China Seismological Bureau,the estimation error of the epicenter and the magnitude is about 12 km and 0.1 magnitude unit,respectively.It has shown that high-rate GPS could be a new tool feasible for estimating the earthquake epicenter and magnitude,independent of or combined with seismometers.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079046, 50909041, 50809025, 50879024)the National Science and Technology Support Plan (Grant Nos. 2008BAB29B03, 2008BAB29B06)+7 种基金the Special Fund of State Key Laboratory of China (Grant Nos. 2009586012, 2010585212)the Fundamental Research Funds for the Central Universities (Grant Nos. 2009B08514, 2010B20414, 2010B14114)China Hydropower Engineering Consulting Group Co. Science and Technology Support Project (Grant No. CHC-KJ-2007-02)Jiangsu Province "333 High-Level Personnel Training Project" (Grant No. 2017-B08037)the Natural Science Foundation of Hohai University (Grant No. 2008426811)Graduate Innovation Program of Universities in Jiangsu Province (Grant No. CX09B_163Z)the Science Foundation for The Excellent Youth Scholars of Ministry of Education of China (Grant No. 20070294023)Dominant Discipline Construction Program Funded Projects of Universities in Jiangsu Province
文摘A method of the fuzzy cross-correlation factor exponent in dynamics is researched and proposed to diagnose abnormality of cracks in the concrete dam. Moreover, the Logistic time series changing from period-doubling bifurcation to chaos is tested first using this method. Results indicate that it can distinguish inherent dynamics of time series and can detect mutations. Considering that cracks in the concrete dam constitute an open, dissipative and complex nonlinear dynamical system, a typical crack on the downstream face of a concrete gravity arch dam is analyzed with the proposed method. Two distinct mutations are discovered to indicate that the abnormality diagnosis of cracks in the concrete dam is achieved dynamically through this method. Furthermore, because it can be directly utilized in the measured crack opening displacement series to complete abnormality diagnosis, it has a good prospect for practical applications.
基金the Xi’an University of Posts and Telecommunicationsthe Physical Sciences Division at the University of Chicagothe Scientific Research Program(Grant No.15JK1685)of the Shaanxi Provincial Education Department
文摘We report two models of the lateral displacement of acoustic-wave scattering on a fluid-solid interface that reveal an acoustic analog of the Goos-Hainchen effect in optics. This acoustic analog is called the acoustic Goos-Hainchen effect. Using newly proposed models, we made numerical calculations for the system ofa water-Perspex interface. Specifically, in the post-critical-angle region, we observed a lateral displacement (and transition time) of the reflected P-wave with respect to the incident P-wave. The first arrival of the acoustic signal from the interface is found to be a reflected P-wave rather than the sliding-refraction P-wave usually described in traditional acoustic-logging sliding P-wave theory. For both proposed models, the effective propagation speed of the reflected P-wave along the interface depends on not only the physical properties of the interracial media but also the incident angle. These observations are intriguing and warrant further investigation.
基金Supported by the National Natural Science Foundation of China under Grant No.11005038the Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0964the Hunan Provincial Natural Science Foundation of China under Grant No.11JJ7001
文摘We investigate the evolution dynamics of a two-level atom system interacting with the massless scalar field in a Cylindrical spacetime. We find that both the energy shifts of ground state and excited state can be separated into two parts due to the vacuum fluctuations. One is the corresponding energy shift for a rest atom in four-dimensional Minkowski space without spatial compactification, the other is just the modification of the spatial compactified periodic length. It will reveal that the influence of the presence of one spatial compactified dimension can not be neglected in Lamb shift as the relative energy level shift of an ~tom.