期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
高等学校移动学习网建设
1
作者 李丽霞 包汉宗 骆耀祖 《福建电脑》 2012年第9期61-62,共2页
在简要介绍移动学习概念的基础上,对笔者所在学院移动学习网的设计原则、功能组成进行了详细叙述。对移动学习网发布后的运行情况以及对移动学习的问卷调查进行了介绍。最后根据调查结果对如何提高移动学习网的效果提出了思路和几点措施。
关键词 移动学习 移动学习网 调查 改进措施
下载PDF
前景诱人的蓝牙技术及其在远程、移动、网络教育中的应用展望 被引量:4
2
作者 焦聘武 《电化教育研究》 CSSCI 北大核心 2006年第9期41-43,共3页
本文在介绍蓝牙技术概念的基础上,简要说明了蓝牙技术的网络结构、组成、特点及由蓝牙技术衍生出的多种实际应用。接着提出了蓝牙教学网、蓝牙多媒体教室、蓝牙远程移动实时授课系统、个人微型移动蓝牙随身学习网等概念并作了一定分析... 本文在介绍蓝牙技术概念的基础上,简要说明了蓝牙技术的网络结构、组成、特点及由蓝牙技术衍生出的多种实际应用。接着提出了蓝牙教学网、蓝牙多媒体教室、蓝牙远程移动实时授课系统、个人微型移动蓝牙随身学习网等概念并作了一定分析和讨论。 展开更多
关键词 蓝牙技术 蓝牙教学网 蓝牙多媒体教室 蓝牙远程移动实时授课系统 个人微型移动蓝牙随身学习网
下载PDF
Parallelized Jaccard-Based Learning Method and MapReduce Implementation for Mobile Devices Recognition from Massive Network Data 被引量:2
3
作者 刘军 李银周 +2 位作者 Felix Cuadrado Steve Uhlig 雷振明 《China Communications》 SCIE CSCD 2013年第7期71-84,共14页
The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this pape... The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions. 展开更多
关键词 mobile device recognition data mining Jaccard coefficient measurement distributed computing MAPREDUCE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部