基于生物免疫系统的自适应学习、记忆、监视等功能,设计适用于高维动态函数优化的自适应免疫算法.算法设计中,利用抗体的学习功能设计抗体动态进化模块;利用基因漂移促成抗体群中非优越抗体重构;利用记忆特性和记忆池动态维持功能,设计...基于生物免疫系统的自适应学习、记忆、监视等功能,设计适用于高维动态函数优化的自适应免疫算法.算法设计中,利用抗体的学习功能设计抗体动态进化模块;利用基因漂移促成抗体群中非优越抗体重构;利用记忆特性和记忆池动态维持功能,设计由记忆子集合构成的动态记忆池,并经由 Average linkage 保存优秀的记忆细胞;利用动态监视功能建立环境判别规则和初始抗体群的生成规则.该算法结构简单、灵活,以及在不同环境下寻优时间可以动态调节.数值实验比较显示出其优越性和在执行效率、执行效果中寻求权衡的有效性,并且对复杂的高维动态环境优化问题具有较大应用潜力.展开更多
Line heating method is widely used to manufacture curved surfaces in ship building. The main factors governing the quality of the manufactured products are the moving velocity of the heating source, heating strength, ...Line heating method is widely used to manufacture curved surfaces in ship building. The main factors governing the quality of the manufactured products are the moving velocity of the heating source, heating strength, and heating ways. In this study, the temperature distributions of the heated plate were investigated with the condition that the line heating process was automatic. The temperature variations were also investigated with the changes of those three variables. The numerical results showed that the peak temperature decreased as the moving velocity of the heating source increased. It also revealed that the peak temperatures changed linearly with the changes of the heating source.展开更多
文摘基于生物免疫系统的自适应学习、记忆、监视等功能,设计适用于高维动态函数优化的自适应免疫算法.算法设计中,利用抗体的学习功能设计抗体动态进化模块;利用基因漂移促成抗体群中非优越抗体重构;利用记忆特性和记忆池动态维持功能,设计由记忆子集合构成的动态记忆池,并经由 Average linkage 保存优秀的记忆细胞;利用动态监视功能建立环境判别规则和初始抗体群的生成规则.该算法结构简单、灵活,以及在不同环境下寻优时间可以动态调节.数值实验比较显示出其优越性和在执行效率、执行效果中寻求权衡的有效性,并且对复杂的高维动态环境优化问题具有较大应用潜力.
基金supported by the post BK21 project of the MEST of Koreapartly supported by the NRL program of NRF of Korea (2008-0060153)
文摘Line heating method is widely used to manufacture curved surfaces in ship building. The main factors governing the quality of the manufactured products are the moving velocity of the heating source, heating strength, and heating ways. In this study, the temperature distributions of the heated plate were investigated with the condition that the line heating process was automatic. The temperature variations were also investigated with the changes of those three variables. The numerical results showed that the peak temperature decreased as the moving velocity of the heating source increased. It also revealed that the peak temperatures changed linearly with the changes of the heating source.