The problem of optimal linear estimation of the functional Aξ =10^∞a(t)ζ((t)dt depending on the unknown values of periodically correlated stochastic process ζ(t) from observations of this process for t 〈 0...The problem of optimal linear estimation of the functional Aξ =10^∞a(t)ζ((t)dt depending on the unknown values of periodically correlated stochastic process ζ(t) from observations of this process for t 〈 0 is considered. Formulas that determine the greatest value of mean square error and the minimax estimation for the functional are proposed for the given class of admissible processes. It is shown that one-sided moving average stationary sequence gives the greatest value of the mean square error.展开更多
The need for accurate rainfall prediction is readily apparent when considering many benefits in which such information would provide for river control, reservoir operation, forestry interests, flood mitigation, etc.. ...The need for accurate rainfall prediction is readily apparent when considering many benefits in which such information would provide for river control, reservoir operation, forestry interests, flood mitigation, etc.. Due to importance of rainfall in many aspects, studies on rainfall forecast have been conducted since a few decades ago. Although many methods have been introduced, all the researches describe the study as complex because it involves numerous variables and still need to be improved. Nowadays, there are various traditional techniques and mathematical models available, yet, there are no result on which method provide the most reliable estimation. AR (auto-regressive), ARMA (auto-regressive moving average), ARIMA (auto-regressive integrated moving average) and ANNs (artificial neural networks) were introduced as a useful and efficient tool for modeling and forecasting. The conventional time series provide reasonable accuracy but suffer from the assumptions of stationary and linearity. The concept of neurons was introduced first which then developed to ANNs with back propagation training algorithm. Although certain ANNs) models are equivalent to time series model, but it is limited to short term forecasting. This Paper presents a mathematical approach for rainfall forecasting for Iran on monthly basic. The model is trained for monthly rainfall forecasting and tested to evaluate the performance of the model. The result Shows reasonably good accuracy for monthly rainfall forecasting.展开更多
文摘The problem of optimal linear estimation of the functional Aξ =10^∞a(t)ζ((t)dt depending on the unknown values of periodically correlated stochastic process ζ(t) from observations of this process for t 〈 0 is considered. Formulas that determine the greatest value of mean square error and the minimax estimation for the functional are proposed for the given class of admissible processes. It is shown that one-sided moving average stationary sequence gives the greatest value of the mean square error.
文摘The need for accurate rainfall prediction is readily apparent when considering many benefits in which such information would provide for river control, reservoir operation, forestry interests, flood mitigation, etc.. Due to importance of rainfall in many aspects, studies on rainfall forecast have been conducted since a few decades ago. Although many methods have been introduced, all the researches describe the study as complex because it involves numerous variables and still need to be improved. Nowadays, there are various traditional techniques and mathematical models available, yet, there are no result on which method provide the most reliable estimation. AR (auto-regressive), ARMA (auto-regressive moving average), ARIMA (auto-regressive integrated moving average) and ANNs (artificial neural networks) were introduced as a useful and efficient tool for modeling and forecasting. The conventional time series provide reasonable accuracy but suffer from the assumptions of stationary and linearity. The concept of neurons was introduced first which then developed to ANNs with back propagation training algorithm. Although certain ANNs) models are equivalent to time series model, but it is limited to short term forecasting. This Paper presents a mathematical approach for rainfall forecasting for Iran on monthly basic. The model is trained for monthly rainfall forecasting and tested to evaluate the performance of the model. The result Shows reasonably good accuracy for monthly rainfall forecasting.