In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mob...In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mobile robot to safely navigate in an indoor environment. First, the designs of two behaviors for a robot's autonomous navigation are described, including path tracking and obstacle avoidance, which emulate human driving behaviors and reduce the complexity of the robot's navigation problems in unknown environments. Secondly, the two behaviors are combined by using a finite state machine (FSM), which ensures that the robot can safely track a predefined path in an unknown indoor environment. The inputs to this controller are the readings from the sensors. The corresponding output is the desired direction of the robot. Finally, both the simulation and experimental results verify the effectiveness of the proposed method.展开更多
With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ab...With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ability of the robot to complete the task is also valued and widely used.In this paper, the whole covered area of the local path planning uses a fuzzy control algorithm,which uses the robustness and an action of perception based on the biological behavior of the fuzzy control algorithm combined with itself.For obstacle avoidance system of mobile robots,we put forward the avoidance strategy of fully contacting the obstacles.And we have conducted a deep study about the theory and implementation methods.展开更多
基金Cultivation Fund for Innovation Project of Ministry of Education (No.708045)
文摘In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mobile robot to safely navigate in an indoor environment. First, the designs of two behaviors for a robot's autonomous navigation are described, including path tracking and obstacle avoidance, which emulate human driving behaviors and reduce the complexity of the robot's navigation problems in unknown environments. Secondly, the two behaviors are combined by using a finite state machine (FSM), which ensures that the robot can safely track a predefined path in an unknown indoor environment. The inputs to this controller are the readings from the sensors. The corresponding output is the desired direction of the robot. Finally, both the simulation and experimental results verify the effectiveness of the proposed method.
文摘With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ability of the robot to complete the task is also valued and widely used.In this paper, the whole covered area of the local path planning uses a fuzzy control algorithm,which uses the robustness and an action of perception based on the biological behavior of the fuzzy control algorithm combined with itself.For obstacle avoidance system of mobile robots,we put forward the avoidance strategy of fully contacting the obstacles.And we have conducted a deep study about the theory and implementation methods.