期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
SLAM问题中机器人定位误差分析与控制 被引量:35
1
作者 季秀才 郑志强 张辉 《自动化学报》 EI CSCD 北大核心 2008年第3期323-330,共8页
移动机器人同步定位与建图问题(Simultaneous localization and mapping,SLAM)是机器人能否在未知环境中实现完全自主的关键问题之一.其中,机器人定位估计对于保持地图的一致性非常重要.本文分析了SLAM问题中机器人定位误差的收敛特性.... 移动机器人同步定位与建图问题(Simultaneous localization and mapping,SLAM)是机器人能否在未知环境中实现完全自主的关键问题之一.其中,机器人定位估计对于保持地图的一致性非常重要.本文分析了SLAM问题中机器人定位误差的收敛特性.分析表明随着机器人的运动,机器人定位误差总体上逐渐增大;在完全未知环境中无法预测机器人定位误差的上限.根据理论分析,本文提出了一种控制机器人定位误差在单位距离上增长速度的算法.该算法通过搜索获得满足定位误差限制的最佳的机器人运动速度,从而控制机器人定位误差的增长. 展开更多
关键词 slam问题 移动机器人 定位误差 误差控制
下载PDF
基于物联网的中小学物流机器人科技创新教育
2
作者 陈维 徐远贵 +2 位作者 丁玉容 谭清强 黄玉灯 《中文科技期刊数据库(全文版)教育科学》 2022年第3期195-198,共4页
近年来,为了提高科教机器人的应用范围和教育质量,设计了一种低成本模块化的物流机器人和教育平台,提高了应用场景同时也为机器人教育提供了更多选择,针对目前科教机器人存在的问题,建立智能物流管理系统和教育平台,利用SAR SLAM技术解... 近年来,为了提高科教机器人的应用范围和教育质量,设计了一种低成本模块化的物流机器人和教育平台,提高了应用场景同时也为机器人教育提供了更多选择,针对目前科教机器人存在的问题,建立智能物流管理系统和教育平台,利用SAR SLAM技术解决机器人未知领域的路径规划问题,然后利用模块化接口专项训练机器人的各个模块在各大领域的作用,提升了寻路效率,降低了货物配送的差错率,并且在各个领域适应性更强。 展开更多
关键词 物流机器人 智能物流管理系统 移动机器人slam 寻路效率
下载PDF
A novel robust approach for SLAM of mobile robot
3
作者 马家辰 张琦 马立勇 《Journal of Central South University》 SCIE EI CAS 2014年第6期2208-2215,共8页
The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. ... The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. However, there are two obvious limitations in FastSLAM 2.0, one is the linear approximations of nonlinear functions which would cause the filter inconsistent and the other is the "particle depletion" phenomenon. A kind of PSO & Hjj-based FastSLAM 2.0 algorithm is proposed. For maintaining the estimation accuracy, H~ filter is used instead of EKF for overcoming the inaccuracy caused by the linear approximations of nonlinear functions. The unreasonable proposal distribution of particle greatly influences the pose state estimation of robot. A new sampling strategy based on PSO (particle swarm optimization) is presented to solve the "particle depletion" phenomenon and improve the accuracy of pose state estimation. The proposed approach overcomes the obvious drawbacks of standard FastSLAM 2.0 algorithm and enhances the robustness and efficiency in the parts of consistency of filter and accuracy of state estimation in SLAM. Simulation results demonstrate the superiority of the proposed approach. 展开更多
关键词 mobile robot simultaneous localization and mapping slam improved Fastslam 2.0 H∞ filter particle swarmoptimization (PSO)
下载PDF
A novel method for mobile robot simultaneous localization and mapping 被引量:4
4
作者 LI Mao-hai HONG Bing-rong +1 位作者 LUO Rong-hua WEI Zhen-hua 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第6期937-944,共8页
A novel mobile robot simultaneous localization and mapping (SLAM) method is implemented by using the Rao- Blackwellized particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment.... A novel mobile robot simultaneous localization and mapping (SLAM) method is implemented by using the Rao- Blackwellized particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment. The particle filter combined with unscented Kalman filter (UKF) for extending the path posterior by sampling new poses integrating the current observation. Landmark position estimation and update is implemented through UKF. Furthermore, the number of resampling steps is determined adaptively, which greatly reduces the particle depletion problem. Monocular CCD camera mounted on the robot tracks the 3D natural point landmarks structured with matching image feature pairs extracted through Scale Invariant Feature Transform (SIFT). The matching for multi-dimension SIFT features which are highly distinctive due to a special descriptor is implemented with a KD-Tree. Experiments on the robot Pioneer3 showed that our method is very precise and stable. 展开更多
关键词 Mobile robot Rao-Blackwellized particle filter (RBPF) Monocular vision Simultaneous localization and mapping slam
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部