期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种针对背景变化的移动物体压缩量子关联成像方法
1
作者 徐晓赫 刘娇 赵生妹 《南京邮电大学学报(自然科学版)》 北大核心 2016年第2期111-117,共7页
提出了一种针对背景变化的移动物体压缩量子关联成像方法,可实现移动物体的追踪。将移动物体每个时刻的图像作为量子关联成像的物体,相邻时刻两幅图像的量子关联成像符合测量差值为测量值,参考光路空间光调制器上的二维随机分布作测量矩... 提出了一种针对背景变化的移动物体压缩量子关联成像方法,可实现移动物体的追踪。将移动物体每个时刻的图像作为量子关联成像的物体,相邻时刻两幅图像的量子关联成像符合测量差值为测量值,参考光路空间光调制器上的二维随机分布作测量矩阵,通过最小化增广拉格朗日函数和交替方向全变差算法(TVAL3)压缩感知获得移动物体相邻时刻关联成像差值图像。在此基础上,对差值图像进行"与"操作,得到移动物体各个时刻的位置和形状信息。数值实验的结果表明,在采样率低至0.075时,该方法能有效地获得移动物体的动态变化信息。该方法利用关联成像保证了不可达环境下对移动物体的追踪;利用压缩感知技术降低了重构差值图像时所需的测量次数;通过差值处理避免了背景变化对移动物体检测的影响。为移动物体的跟踪研究提供了一种新方向。 展开更多
关键词 量子关联成像 背景变化 移动物体识别 压缩感知 增广式最小化全变差重建算法
下载PDF
基于深度学习的移动物体检测 被引量:1
2
作者 曾贤灏 《电子技术与软件工程》 2020年第11期146-149,共4页
本文为解决深度学习中无法达到对多张照片移动目标物体识别的需求,提出一种基于深度学习的移动物体检测方法。首先利用前馈神经网络中目标定位技术设计目标定位模型,计算出目标边界框的大概位置,再基于时间空间融合方法提取特征,以3D卷... 本文为解决深度学习中无法达到对多张照片移动目标物体识别的需求,提出一种基于深度学习的移动物体检测方法。首先利用前馈神经网络中目标定位技术设计目标定位模型,计算出目标边界框的大概位置,再基于时间空间融合方法提取特征,以3D卷积网络提取时间信息对移动目标行为进行预测,通过级联分类器剔除非有效目标,有效提高了移动物体检测的准确性和效率。 展开更多
关键词 移动目标物体识别 目标检测 自然语言
下载PDF
An efficient approach for shadow detection based on Gaussian mixture model 被引量:2
3
作者 韩延祥 张志胜 +1 位作者 陈芳 陈恺 《Journal of Central South University》 SCIE EI CAS 2014年第4期1385-1395,共11页
An efficient approach was proposed for discriminating shadows from moving objects. In the background subtraction stage, moving objects were extracted. Then, the initial classification for moving shadow pixels and fore... An efficient approach was proposed for discriminating shadows from moving objects. In the background subtraction stage, moving objects were extracted. Then, the initial classification for moving shadow pixels and foreground object pixels was performed by using color invariant features. In the shadow model learning stage, instead of a single Gaussian distribution, it was assumed that the density function computed on the values of chromaticity difference or bright difference, can be modeled as a mixture of Gaussian consisting of two density functions. Meanwhile, the Gaussian parameter estimation was performed by using EM algorithm. The estimates were used to obtain shadow mask according to two constraints. Finally, experiments were carried out. The visual experiment results confirm the effectiveness of proposed method. Quantitative results in terms of the shadow detection rate and the shadow discrimination rate(the maximum values are 85.79% and 97.56%, respectively) show that the proposed approach achieves a satisfying result with post-processing step. 展开更多
关键词 shadow detection Gaussian mixture model EM algorithm
下载PDF
General moving objects recognition method based on graph embedding dimension reduction algorithm 被引量:1
4
作者 Yi ZHANG Jie YANG Kun LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第7期976-984,共9页
Effective and robust recognition and tracking of objects are the key problems in visual surveillance systems. Most existing object recognition methods were designed with particular objects in mind. This study presents... Effective and robust recognition and tracking of objects are the key problems in visual surveillance systems. Most existing object recognition methods were designed with particular objects in mind. This study presents a general moving objects recognition method using global features of targets. Targets are extracted with an adaptive Gaussian mixture model and their silhouette images are captured and unified. A new objects silhouette database is built to provide abundant samples to train the subspace feature. This database is more convincing than the previous ones. A more effective dimension reduction method based on graph embedding is used to obtain the projection eigenvector. In our experiments, we show the effective performance of our method in addressing the moving objects recognition problem and its superiority compared with the previous methods. 展开更多
关键词 Moving objects recognition Adaptive Gaussian mixture model Principal component analysis Linear discriminant analysis Marginal Fisher analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部