Considering that modern mobile terminals possess the capability to detect users' proximity,and offer means to directly communicate and share content with the people in close area,Device-to-Device(D2D) based Proxim...Considering that modern mobile terminals possess the capability to detect users' proximity,and offer means to directly communicate and share content with the people in close area,Device-to-Device(D2D) based Proximity Services(ProSe) have recently witnessed great development,which enable users to seek for and utilize relevant value in their physical proximity,and are capable to create numerous new mobile service opportunities.However,without a breakthrough in battery technology,the energy will be the biggest limitation for ProSe.Through incorporating the features of ProSe(D2D communication technologies,abundant built-in sensors,localization-dependent,and context-aware,etc.),this paper thoroughly investigates the energy-efficient architecture and technologies for ProSe from the following four aspects:underlying networking technology,localization,application and architecture features,context-aware and user interactions.Besides exploring specific energy-efficient schemes pertaining to each aspect,this paper offers a perspective for research and applications.In brief,through classifying,summarizing and optimizing the multiple efforts on studying,modeling and reducing energy consumption for ProSe on mobile devices,the paper would provide guide for developers to build energy-efficient ProSe.展开更多
The growing number of mobile users, as well as the diversification in types of services have resulted in increasing demands for wireless network bandwidth in recent years. Although evolving transmission techniques are...The growing number of mobile users, as well as the diversification in types of services have resulted in increasing demands for wireless network bandwidth in recent years. Although evolving transmission techniques are able to enlarge the network capacity to some degree, they still cannot satisfy the requirements of mobile users. Meanwhile, following Moore's Law, the data processing capabilities of mobile user terminals are continuously improving. In this paper, we explore possible methods of trading strong computational power at wireless terminals for transmission efficiency of communications. Taking the specific scenario of wireless video conversation, we propose a model-based video coding scheme by learning the structures in multimedia contents. Benefiting from both strong computing capability and pre-learned model priors, only low-dimensional parameters need to be transmitted; and the intact multimedia contents can also be reconstructed at the receivers in real-time. Experiment results indicate that, compared to conventional video codecs, the proposed scheme significantly reduces the data rate with the aid of computational capability at wireless terminals.展开更多
Many specified business needs in enterprise context cannot be effectively satisfied using current business process technology.This phenomenon is called the "long tail" of business processes.In addition,more ...Many specified business needs in enterprise context cannot be effectively satisfied using current business process technology.This phenomenon is called the "long tail" of business processes.In addition,more and more business applications need to be accessed from mobile devices such as smartphones by enterprise end users.This paper attempts to solve both two challenges above.A lightweight event-driven process model is proposed aiming at satisfying the spontaneous business needs in enterprise.And we design an innovative wizard,which works like a tutorial,guiding end users in creating this lightweight process model.Moreover,end users are allowed to interact with the process created by themselves on smartphones.Finally,the usability of our approach was evaluated on a small set of users in a real business scenario.The results show that end users can effectively build their personalized business processes using our approach and interact with them in mobile environment.展开更多
基金supported by the National Natural Science Foundation of China under Grant 61171092the JiangSu Educational Bureau Project under Grant 14KJA510004Prospective Research Project on Future Networks(JiangSu Future Networks Innovation Institute)
文摘Considering that modern mobile terminals possess the capability to detect users' proximity,and offer means to directly communicate and share content with the people in close area,Device-to-Device(D2D) based Proximity Services(ProSe) have recently witnessed great development,which enable users to seek for and utilize relevant value in their physical proximity,and are capable to create numerous new mobile service opportunities.However,without a breakthrough in battery technology,the energy will be the biggest limitation for ProSe.Through incorporating the features of ProSe(D2D communication technologies,abundant built-in sensors,localization-dependent,and context-aware,etc.),this paper thoroughly investigates the energy-efficient architecture and technologies for ProSe from the following four aspects:underlying networking technology,localization,application and architecture features,context-aware and user interactions.Besides exploring specific energy-efficient schemes pertaining to each aspect,this paper offers a perspective for research and applications.In brief,through classifying,summarizing and optimizing the multiple efforts on studying,modeling and reducing energy consumption for ProSe on mobile devices,the paper would provide guide for developers to build energy-efficient ProSe.
基金supported by the National Basic Research Project of China (973) (2013CB329006)National Natural Science Foundation of China (NSFC, 61101071,61471220, 61021001)Tsinghua University Initiative Scientific Research Program
文摘The growing number of mobile users, as well as the diversification in types of services have resulted in increasing demands for wireless network bandwidth in recent years. Although evolving transmission techniques are able to enlarge the network capacity to some degree, they still cannot satisfy the requirements of mobile users. Meanwhile, following Moore's Law, the data processing capabilities of mobile user terminals are continuously improving. In this paper, we explore possible methods of trading strong computational power at wireless terminals for transmission efficiency of communications. Taking the specific scenario of wireless video conversation, we propose a model-based video coding scheme by learning the structures in multimedia contents. Benefiting from both strong computing capability and pre-learned model priors, only low-dimensional parameters need to be transmitted; and the intact multimedia contents can also be reconstructed at the receivers in real-time. Experiment results indicate that, compared to conventional video codecs, the proposed scheme significantly reduces the data rate with the aid of computational capability at wireless terminals.
基金supported by the National 973 Programs(Grant No.2013CB329102)the National Natural Science Foundation of China (Grant No.61003067)Key Project of National Natural Science Foundation of China (Grant No.61132001)
文摘Many specified business needs in enterprise context cannot be effectively satisfied using current business process technology.This phenomenon is called the "long tail" of business processes.In addition,more and more business applications need to be accessed from mobile devices such as smartphones by enterprise end users.This paper attempts to solve both two challenges above.A lightweight event-driven process model is proposed aiming at satisfying the spontaneous business needs in enterprise.And we design an innovative wizard,which works like a tutorial,guiding end users in creating this lightweight process model.Moreover,end users are allowed to interact with the process created by themselves on smartphones.Finally,the usability of our approach was evaluated on a small set of users in a real business scenario.The results show that end users can effectively build their personalized business processes using our approach and interact with them in mobile environment.