期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度学习的移动物体检测 被引量:1
1
作者 曾贤灏 《电子技术与软件工程》 2020年第11期146-149,共4页
本文为解决深度学习中无法达到对多张照片移动目标物体识别的需求,提出一种基于深度学习的移动物体检测方法。首先利用前馈神经网络中目标定位技术设计目标定位模型,计算出目标边界框的大概位置,再基于时间空间融合方法提取特征,以3D卷... 本文为解决深度学习中无法达到对多张照片移动目标物体识别的需求,提出一种基于深度学习的移动物体检测方法。首先利用前馈神经网络中目标定位技术设计目标定位模型,计算出目标边界框的大概位置,再基于时间空间融合方法提取特征,以3D卷积网络提取时间信息对移动目标行为进行预测,通过级联分类器剔除非有效目标,有效提高了移动物体检测的准确性和效率。 展开更多
关键词 移动目标物体识别 目标检测 自然语言
下载PDF
General moving objects recognition method based on graph embedding dimension reduction algorithm 被引量:1
2
作者 Yi ZHANG Jie YANG Kun LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第7期976-984,共9页
Effective and robust recognition and tracking of objects are the key problems in visual surveillance systems. Most existing object recognition methods were designed with particular objects in mind. This study presents... Effective and robust recognition and tracking of objects are the key problems in visual surveillance systems. Most existing object recognition methods were designed with particular objects in mind. This study presents a general moving objects recognition method using global features of targets. Targets are extracted with an adaptive Gaussian mixture model and their silhouette images are captured and unified. A new objects silhouette database is built to provide abundant samples to train the subspace feature. This database is more convincing than the previous ones. A more effective dimension reduction method based on graph embedding is used to obtain the projection eigenvector. In our experiments, we show the effective performance of our method in addressing the moving objects recognition problem and its superiority compared with the previous methods. 展开更多
关键词 Moving objects recognition Adaptive Gaussian mixture model Principal component analysis Linear discriminant analysis Marginal Fisher analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部