Claimed as the next generation programming paradigm, mobile agent technology has attracted extensive interests in recent years. However, up to now, limited research efforts have been devoted to the performance study o...Claimed as the next generation programming paradigm, mobile agent technology has attracted extensive interests in recent years. However, up to now, limited research efforts have been devoted to the performance study of mobile agent system and most of these researches focus on agent behavior analysis resulting in that models are hard to apply to mobile agent systems. To bridge the gap, a new performance evaluation model derived from operation mechanisms of mobile agent platforms is proposed. Details are discussed for the design of companion simulation software, which can provide the system performance such as response time of platform to mobile agent. Further investigation is followed on the determination of model parameters. Finally comparison is made between the model-based simulation results and measurement-based real performance of mobile agent systems. The results show that the proposed model and designed software are effective in evaluating performance characteristics of mobile agent systems. The proposed approach can also be considered as the basis of performance analysis for large systems composed of multiple mobile agent platforms.展开更多
Mobile applications are being used in a great range of fields and application areas. As a result, many research fields have focused on the study and improvement of such devices. The current Smartphones are the best ex...Mobile applications are being used in a great range of fields and application areas. As a result, many research fields have focused on the study and improvement of such devices. The current Smartphones are the best example of the research and the evolution of these technologies. Moreover, the software design and development is progressively more focused on the user; finding and developing new mobile interaction models. In order to do so, knowing what kind of problems the users could have is vital to enhance a bad interaction design. Unfortunately, a good software quality evaluation takes more time than the companies can invest. The contribution revealed in this work is a new approach to quality testing methodology focused on mobile interactions and their context in use where external capturing tools, such as cameras, are suppressed and the evaluation environments are the same as the user will use the application. By this approach, the interactions can be captured without changing the context and consequently, the data will be more accurate, enabling the evaluation of the quality-in-use in real environments.展开更多
基金Supported by the National Natural Science Foundation of China (No.60072047) and Huawei Science and Technology Foundation (No.YJIN2003004)
文摘Claimed as the next generation programming paradigm, mobile agent technology has attracted extensive interests in recent years. However, up to now, limited research efforts have been devoted to the performance study of mobile agent system and most of these researches focus on agent behavior analysis resulting in that models are hard to apply to mobile agent systems. To bridge the gap, a new performance evaluation model derived from operation mechanisms of mobile agent platforms is proposed. Details are discussed for the design of companion simulation software, which can provide the system performance such as response time of platform to mobile agent. Further investigation is followed on the determination of model parameters. Finally comparison is made between the model-based simulation results and measurement-based real performance of mobile agent systems. The results show that the proposed model and designed software are effective in evaluating performance characteristics of mobile agent systems. The proposed approach can also be considered as the basis of performance analysis for large systems composed of multiple mobile agent platforms.
文摘Mobile applications are being used in a great range of fields and application areas. As a result, many research fields have focused on the study and improvement of such devices. The current Smartphones are the best example of the research and the evolution of these technologies. Moreover, the software design and development is progressively more focused on the user; finding and developing new mobile interaction models. In order to do so, knowing what kind of problems the users could have is vital to enhance a bad interaction design. Unfortunately, a good software quality evaluation takes more time than the companies can invest. The contribution revealed in this work is a new approach to quality testing methodology focused on mobile interactions and their context in use where external capturing tools, such as cameras, are suppressed and the evaluation environments are the same as the user will use the application. By this approach, the interactions can be captured without changing the context and consequently, the data will be more accurate, enabling the evaluation of the quality-in-use in real environments.