Differential interferometric synthetic aperture radar (DInSAR) technology is a new method to monitor the dynamic surface subsidence. It can monitor the large scope of dynamic deformation process of surface subsidenc...Differential interferometric synthetic aperture radar (DInSAR) technology is a new method to monitor the dynamic surface subsidence. It can monitor the large scope of dynamic deformation process of surface subsidence basin and better reflect the surface subsidence form in different stages. But under the influence of factors such as noise and other factors, the tilt and horizontal deformation curves regularity calculated by DInSAR data are poorer and the actual deviation is larger. The tilt and horizontal deformations are the important indices for the safety of surface objects protection. Numerical simulation method was used to study the dynamic deformation of LW32 of West Cliff colliery in Australia based on the DInSAR monitoring data. The result indicates that the subsidence curves of two methods fit well and the correlation coefficient is more than 95%. The other deformations calculated by numerical simulation results are close to the theory form. Therefore, considering the influence, the surface and its subsidiary structures and buildings due to mining, the numerical simulation method based on the DInSAR data can reveal the distribution rules of the surface dynamic deformation values and supply the shortcomings of DInSAR technology. The research shows that the method has good applicability and can provide reference for similar situation.展开更多
The Wongawilli strip pillar mining technique,which combines the strip pillar mining layout and Wongawilli mining technology,is a new high efficient mining technology for mining under surface structures. The Wongawilli...The Wongawilli strip pillar mining technique,which combines the strip pillar mining layout and Wongawilli mining technology,is a new high efficient mining technology for mining under surface structures. The Wongawilli strip pillar mining technique was studied in this paper using theoretical analysis and numerical simulation. As an example,the geological and mining conditions of a coal mine were used to design the Wongawilli strip pillar plans,including the support parameters of the entries and the mining technology. In order to control the surrounding rocks and manage the roof effectively during coal mining,the stress fields,displacement fields and plastic zones were studied by numerical simulation. The stress fields,displacement fields,and plastic zones generated by Wongawilli strip pillar mining were obtained. And the surface movement and deformation were also determined after mining was completed and its effects on surface structures were analyzed and evaluated. The results demonstrate that it is feasible to mine under surface structures with the Wongawilli strip pillar mining technique. This mining method can protect the surface structures from damages.展开更多
Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the...Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the ground,the equivalent mechanical parameters of the rock stratums can be back-calculated by the properly treatment of coal excavation area,then the ground subsidence of other coal mining area can be predicted by FFM.It provided reference for the treatment of the buildings on the ground of this colliery.展开更多
The overburden failure causes the changes of the constant electric field, and the resistivity is the main parameter in these changes. The experimental simulation about tbe response relation between the overburden fail...The overburden failure causes the changes of the constant electric field, and the resistivity is the main parameter in these changes. The experimental simulation about tbe response relation between the overburden failure and its electrical parameter changes is made by building the similar material physics model of mining. The experiment results are used to analyze and test the in-situ detection. The research indicates that the resistivity changes with the electric characteristic of the rock in cracked zone and caving zone caused by overburden failure, the response characteristics of resistivity vary with the failure degrees at different overburden failure zone and that they are corresponding. The resistivity method used in monitoring the overburden failure can determine the height and the affecting scopes of the cracked zone and caving zone. This can provide reliable techaological guarantee for mining design and safe production.展开更多
基金Project (20110023110014) supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010QD01) supported by Fundamental Research Funds for the Central Universities,China
文摘Differential interferometric synthetic aperture radar (DInSAR) technology is a new method to monitor the dynamic surface subsidence. It can monitor the large scope of dynamic deformation process of surface subsidence basin and better reflect the surface subsidence form in different stages. But under the influence of factors such as noise and other factors, the tilt and horizontal deformation curves regularity calculated by DInSAR data are poorer and the actual deviation is larger. The tilt and horizontal deformations are the important indices for the safety of surface objects protection. Numerical simulation method was used to study the dynamic deformation of LW32 of West Cliff colliery in Australia based on the DInSAR monitoring data. The result indicates that the subsidence curves of two methods fit well and the correlation coefficient is more than 95%. The other deformations calculated by numerical simulation results are close to the theory form. Therefore, considering the influence, the surface and its subsidiary structures and buildings due to mining, the numerical simulation method based on the DInSAR data can reveal the distribution rules of the surface dynamic deformation values and supply the shortcomings of DInSAR technology. The research shows that the method has good applicability and can provide reference for similar situation.
基金sponsored by the National Natural Science Foundation of China (No.51374092)
文摘The Wongawilli strip pillar mining technique,which combines the strip pillar mining layout and Wongawilli mining technology,is a new high efficient mining technology for mining under surface structures. The Wongawilli strip pillar mining technique was studied in this paper using theoretical analysis and numerical simulation. As an example,the geological and mining conditions of a coal mine were used to design the Wongawilli strip pillar plans,including the support parameters of the entries and the mining technology. In order to control the surrounding rocks and manage the roof effectively during coal mining,the stress fields,displacement fields and plastic zones were studied by numerical simulation. The stress fields,displacement fields,and plastic zones generated by Wongawilli strip pillar mining were obtained. And the surface movement and deformation were also determined after mining was completed and its effects on surface structures were analyzed and evaluated. The results demonstrate that it is feasible to mine under surface structures with the Wongawilli strip pillar mining technique. This mining method can protect the surface structures from damages.
文摘Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the ground,the equivalent mechanical parameters of the rock stratums can be back-calculated by the properly treatment of coal excavation area,then the ground subsidence of other coal mining area can be predicted by FFM.It provided reference for the treatment of the buildings on the ground of this colliery.
文摘The overburden failure causes the changes of the constant electric field, and the resistivity is the main parameter in these changes. The experimental simulation about tbe response relation between the overburden failure and its electrical parameter changes is made by building the similar material physics model of mining. The experiment results are used to analyze and test the in-situ detection. The research indicates that the resistivity changes with the electric characteristic of the rock in cracked zone and caving zone caused by overburden failure, the response characteristics of resistivity vary with the failure degrees at different overburden failure zone and that they are corresponding. The resistivity method used in monitoring the overburden failure can determine the height and the affecting scopes of the cracked zone and caving zone. This can provide reliable techaological guarantee for mining design and safe production.