A novel mobile robot simultaneous localization and mapping (SLAM) method is implemented by using the Rao- Blackwellized particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment....A novel mobile robot simultaneous localization and mapping (SLAM) method is implemented by using the Rao- Blackwellized particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment. The particle filter combined with unscented Kalman filter (UKF) for extending the path posterior by sampling new poses integrating the current observation. Landmark position estimation and update is implemented through UKF. Furthermore, the number of resampling steps is determined adaptively, which greatly reduces the particle depletion problem. Monocular CCD camera mounted on the robot tracks the 3D natural point landmarks structured with matching image feature pairs extracted through Scale Invariant Feature Transform (SIFT). The matching for multi-dimension SIFT features which are highly distinctive due to a special descriptor is implemented with a KD-Tree. Experiments on the robot Pioneer3 showed that our method is very precise and stable.展开更多
We present an omnidirectional vision system we have implemented to provide our mobile robot with a fast tracking and robust localization capability. An algorithm is proposed to do reconstruction of the environment fro...We present an omnidirectional vision system we have implemented to provide our mobile robot with a fast tracking and robust localization capability. An algorithm is proposed to do reconstruction of the environment from the omnidirectional image and global localization of the robot in the context of the Middle Size League RoboCup field. This is accomplished by learning a set of visual landmarks such as the goals and the corner posts. Due to the dynamic changing environment and the partially observable landmarks, four localization cases are discussed in order to get robust localization performance. Localization is performed using a method that matches the observed landmarks, i.e. color blobs, which are extracted from the environment. The advantages of the cylindrical projection are discussed giving special consideration to the characteristics of the visual landmark and the meaning of the blob extraction. The analysis is established based on real time experiments with our omnidirectional vision system and the actual mobile robot. The comparative studies are presented and the feasibility of the method is shown.展开更多
基金Project (No. 2002AA735041) supported by the Hi-Tech Researchand Development Program (863) of China
文摘A novel mobile robot simultaneous localization and mapping (SLAM) method is implemented by using the Rao- Blackwellized particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment. The particle filter combined with unscented Kalman filter (UKF) for extending the path posterior by sampling new poses integrating the current observation. Landmark position estimation and update is implemented through UKF. Furthermore, the number of resampling steps is determined adaptively, which greatly reduces the particle depletion problem. Monocular CCD camera mounted on the robot tracks the 3D natural point landmarks structured with matching image feature pairs extracted through Scale Invariant Feature Transform (SIFT). The matching for multi-dimension SIFT features which are highly distinctive due to a special descriptor is implemented with a KD-Tree. Experiments on the robot Pioneer3 showed that our method is very precise and stable.
文摘We present an omnidirectional vision system we have implemented to provide our mobile robot with a fast tracking and robust localization capability. An algorithm is proposed to do reconstruction of the environment from the omnidirectional image and global localization of the robot in the context of the Middle Size League RoboCup field. This is accomplished by learning a set of visual landmarks such as the goals and the corner posts. Due to the dynamic changing environment and the partially observable landmarks, four localization cases are discussed in order to get robust localization performance. Localization is performed using a method that matches the observed landmarks, i.e. color blobs, which are extracted from the environment. The advantages of the cylindrical projection are discussed giving special consideration to the characteristics of the visual landmark and the meaning of the blob extraction. The analysis is established based on real time experiments with our omnidirectional vision system and the actual mobile robot. The comparative studies are presented and the feasibility of the method is shown.