To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathem...To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.展开更多
For improving the estimation accuracy and the convergence speed of the unscented Kalman filter(UKF),a novel adaptive filter method is proposed.The error between the covariance matrices of innovation measurements and t...For improving the estimation accuracy and the convergence speed of the unscented Kalman filter(UKF),a novel adaptive filter method is proposed.The error between the covariance matrices of innovation measurements and their corresponding estimations/predictions is utilized as the cost function.On the basis of the MIT rule,an adaptive algorithm is designed to update the covariance of the process uncertainties online by minimizing the cost function.The updated covariance is fed back into the normal UKF.Such an adaptive mechanism is intended to compensate the lack of a priori knowledge of the process uncertainty distribution and to improve the performance of UKF for the active state and parameter estimations.The asymptotic properties of this adaptive UKF are discussed.Simulations are conducted using an omni-directional mobile robot,and the results are compared with those obtained by normal UKF to demonstrate its effectiveness and advantage over the previous methods.展开更多
一当场,自我本地化系统为在有深入的 3D 里程碑的 3D 环境起作用的活动机器人被开发。机器人通过合并从 odometry 和单向性的照相机收集的信息的一个地图评估者递归地估计它的姿势。我们为这二个传感器造非线性的模型并且坚持说机器人...一当场,自我本地化系统为在有深入的 3D 里程碑的 3D 环境起作用的活动机器人被开发。机器人通过合并从 odometry 和单向性的照相机收集的信息的一个地图评估者递归地估计它的姿势。我们为这二个传感器造非线性的模型并且坚持说机器人运动和不精密的传感器大小的无常操作应该全部被嵌入并且追踪我们的系统。我们在一个概率的几何学观点和使用 unscented 变换描述无常框架宣传无常,它经历给定的非线性的功能。就我们的机器人的处理力量而言,图象特征在相应投射特征的附近被提取。另外,数据协会被统计距离评估。最后,一系列系统的实验被进行证明我们的系统的可靠、精确的性能。展开更多
基金Project(60475035) supported by the National Natural Science Foundation of China
文摘To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.
基金Supported by National High Technology Research and Development Program of China(863 Program)Hi-Tech Research and Development Program of China(2003AA421020)
文摘For improving the estimation accuracy and the convergence speed of the unscented Kalman filter(UKF),a novel adaptive filter method is proposed.The error between the covariance matrices of innovation measurements and their corresponding estimations/predictions is utilized as the cost function.On the basis of the MIT rule,an adaptive algorithm is designed to update the covariance of the process uncertainties online by minimizing the cost function.The updated covariance is fed back into the normal UKF.Such an adaptive mechanism is intended to compensate the lack of a priori knowledge of the process uncertainty distribution and to improve the performance of UKF for the active state and parameter estimations.The asymptotic properties of this adaptive UKF are discussed.Simulations are conducted using an omni-directional mobile robot,and the results are compared with those obtained by normal UKF to demonstrate its effectiveness and advantage over the previous methods.
基金Supported by National Natural Science Foundation of China(60605023,60775048)Specialized Research Fund for the Doctoral Program of Higher Education(20060141006)
文摘一当场,自我本地化系统为在有深入的 3D 里程碑的 3D 环境起作用的活动机器人被开发。机器人通过合并从 odometry 和单向性的照相机收集的信息的一个地图评估者递归地估计它的姿势。我们为这二个传感器造非线性的模型并且坚持说机器人运动和不精密的传感器大小的无常操作应该全部被嵌入并且追踪我们的系统。我们在一个概率的几何学观点和使用 unscented 变换描述无常框架宣传无常,它经历给定的非线性的功能。就我们的机器人的处理力量而言,图象特征在相应投射特征的附近被提取。另外,数据协会被统计距离评估。最后,一系列系统的实验被进行证明我们的系统的可靠、精确的性能。
基金National Natural Science Foundation of P. R. China (60605023)Scientific Research Foundation Conducted by Dalian University of Technology and Shenyang Institute of Automation,Chinese Academy of Sciences