A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one...A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one or several existing shear surfaces. The framework is developed based on a thorough analysis of the scientific literature and with reference to significant reported case studies for which a consistent dataset of continuous displacement measurements is available. Three distinct trends of movement are defined to characterize the kinematic behavior of the active stages of slow-moving landslides in a velocity-time plot: a linear trend-type I, which is appropriate for stationary phenomena; a convex shaped trend-type II, which is associated with rapid increases in pore water pressure due to rainfall, followed by a slow decrease in the groundwater level with time; and a concave shaped trend-type III, which denotes a non-stationary process related to the presence of new boundary conditions such as those associated with the development of a newly formed local slip surface that connects with the main existing slip surface. Within the proposed framework, a model is developed to forecast future displacements for active stages of trend-type II based on displacement measurements at the beginning of the stage. The proposed model is validated by application to two case studies.展开更多
Mining the inherent persistence property of the time series of wind power is crucial for forecasting and controlling wind power.Few common methods exist that can fully depict and quantify the persistence property.Base...Mining the inherent persistence property of the time series of wind power is crucial for forecasting and controlling wind power.Few common methods exist that can fully depict and quantify the persistence property.Based on the definition of the active power output state of a wind farm,this paper describes the statistical persistence property of the duration time and state transition.Based on the results of our analysis of significant amounts of wind power field measurements,it is found that the duration time of wind power conforms to an inverse Gaussian distribution.Additionally,the state transition matrix of wind power is discovered to yield a ridge property,the gradient of which is related to the time scale of interest.A systemaic methodology is proposed accordingly,allowing the statistical characteristics of the wind power series to be represented appropriately.展开更多
基金partially supported by the University of Salerno (Italy) through the Civil and Environmental Engineering Ph.D. programme and FARB research funding
文摘A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one or several existing shear surfaces. The framework is developed based on a thorough analysis of the scientific literature and with reference to significant reported case studies for which a consistent dataset of continuous displacement measurements is available. Three distinct trends of movement are defined to characterize the kinematic behavior of the active stages of slow-moving landslides in a velocity-time plot: a linear trend-type I, which is appropriate for stationary phenomena; a convex shaped trend-type II, which is associated with rapid increases in pore water pressure due to rainfall, followed by a slow decrease in the groundwater level with time; and a concave shaped trend-type III, which denotes a non-stationary process related to the presence of new boundary conditions such as those associated with the development of a newly formed local slip surface that connects with the main existing slip surface. Within the proposed framework, a model is developed to forecast future displacements for active stages of trend-type II based on displacement measurements at the beginning of the stage. The proposed model is validated by application to two case studies.
基金supported by the Natural High Technology Research and Development of China(863 Program)(Grant No.2011AA05A112)the National Natural Science Foundation of China(Grant No.51377027)ABB(China)Ltd.
文摘Mining the inherent persistence property of the time series of wind power is crucial for forecasting and controlling wind power.Few common methods exist that can fully depict and quantify the persistence property.Based on the definition of the active power output state of a wind farm,this paper describes the statistical persistence property of the duration time and state transition.Based on the results of our analysis of significant amounts of wind power field measurements,it is found that the duration time of wind power conforms to an inverse Gaussian distribution.Additionally,the state transition matrix of wind power is discovered to yield a ridge property,the gradient of which is related to the time scale of interest.A systemaic methodology is proposed accordingly,allowing the statistical characteristics of the wind power series to be represented appropriately.